超级电容器
气凝胶
材料科学
杂原子
比表面积
电解质
化学工程
碳纤维
电容
复合材料
电极
有机化学
化学
复合数
烷基
催化作用
物理化学
工程类
作者
Lei E,Jiaming Sun,Wentao Gan,Zhenwei Wu,Zhou Xu,Lifei Xu,Chunhui Ma,Wei Li,Shouxin Liu
标识
DOI:10.1016/j.est.2021.102414
摘要
Derived from abundant biomass, porous carbon materials that have a unique structure, a high specific surface area, and heteroatom doping are promising electrodes for supercapacitors. In this work, using cellulose as the raw material and polypyrrole as the nitrogen source, a porous N-doped carbon aerogel with an interconnected honeycomb-like structure is synthesized by using ice crystals as a template, along with a facile CO2 activation treatment. The carbon aerogels possess a three-dimensional percolation network with a high specific surface area (1196 m2 g − 1) and numerous micropores (0.58 cm3 g − 1), which aid electrolyte penetration and ion storage. In addition, the doped N heteroatoms contribute to a pseudo-capacitance. As a result, the supercapacitor based on the prepared carbon aerogel exhibits a high specific capacitance (160 F g − 1), good charging/discharging rates, and an excellent cycling stability (only 0.18% loss after 3000 cycles). A specific energy up to 21.9 Wh kg−1 is achieved at a specific power of 145 W kg−1 when using a 1-ethyl-3-methylimidazolium tetrafluoroborate electrolyte. This work demonstrates that a N-doped, cellulose-based carbon aerogel with an interconnected honeycomb-like percolation structure is a promising electrode material for high-performance supercapacitors.
科研通智能强力驱动
Strongly Powered by AbleSci AI