材料科学
硫系化合物
异质结
微晶
光电子学
石墨烯
外延
纳米技术
冶金
图层(电子)
作者
Xiaoshan Wang,Qian Chen,Chuang Shen,Jie Dai,Chao Zhu,Shouxin Zhang,Zhiwei Wang,Qingsong Song,Lin Wang,Hai Li,Qiang Wang,Zheng Liu,Zhimin Luo,Xiao Huang,Wei Huang
出处
期刊:ACS Nano
[American Chemical Society]
日期:2021-07-16
卷期号:15 (7): 12171-12179
被引量:12
标识
DOI:10.1021/acsnano.1c03688
摘要
Spatially controlled preparation of heterostructures composed of layered materials is important in achieving interesting properties. Although vapor-phased deposition methods can prepare vertical and lateral heterostructures, liquid-phased methods, which can enable scalable production and further solution processes, have shown limited controllability. Herein, we demonstrate by using wet chemical methods that metallic Sn0.5Mo0.5S2 nanosheets can be deposited epitaxially on the edges of semiconducting SnS2 nanoplates to form SnS2/Sn0.5Mo0.5S2 lateral heterostructures or coated on both the edges and basal surfaces of SnS2 to give SnS2@Sn0.5Mo0.5S2 core@shell heterostructures. They also showed good light-to-heat conversion ability due to the metallic property of Sn0.5Mo0.5S2. In particular, the core@shell heterostructure showed a higher photothermal conversion efficiency than the lateral counterpart, largely due to its randomly oriented and polycrystalline Sn0.5Mo0.5S2 layers with larger interfacing area for multiple internal light scattering.
科研通智能强力驱动
Strongly Powered by AbleSci AI