电解质
氧气
插层(化学)
阳极
解吸
电化学
化学工程
介电谱
傅里叶变换红外光谱
石墨
碳纤维
化学
吸附
材料科学
无机化学
电极
有机化学
复合数
物理化学
复合材料
工程类
作者
Yufan Peng,Zhe Chen,Rui Zhang,Wang Zhou,Peng Gao,Jianfang Wu,Hui Liu,Jilei Liu,Aiping Hu,Xiaohua Chen
标识
DOI:10.1007/s40820-021-00722-3
摘要
Oxygen-containing functional groups were found to effectively boost the K+ storage performance of carbonaceous materials, however, the mechanism behind the performance enhancement remains unclear. Herein, we report higher rate capability and better long-term cycle performance employing oxygen-doped graphite oxide (GO) as the anode material for potassium ion batteries (PIBs), compared to the raw graphite. The in situ Raman spectroscopy elucidates the adsorption-intercalation hybrid K+ storage mechanism, assigning the capacity enhancement to be mainly correlated with reversible K+ adsorption/desorption at the newly introduced oxygen sites. It is unraveled that the C=O and COOH rather than C-O-C and OH groups contribute to the capacity enhancement. Based on in situ Fourier transform infrared (FT-IR) spectra and in situ electrochemical impedance spectroscopy (EIS), it is found that the oxygen-containing functional groups regulate the components of solid electrolyte interphase (SEI), leading to the formation of highly conductive, intact and robust SEI. Through the systematic investigations, we hereby uncover the K+ storage mechanism of GO-based PIB, and establish a clear relationship between the types/contents of oxygen functional groups and the regulated composition of SEI.
科研通智能强力驱动
Strongly Powered by AbleSci AI