Time-Frequency Analysis of Scalp EEG With Hilbert-Huang Transform and Deep Learning

脑电图 模式识别(心理学) 计算机科学 人工智能 希尔伯特变换 时频分析 语音识别 希尔伯特-黄变换 特征提取 小波变换 小波 光谱密度 计算机视觉 神经科学 心理学 电信 滤波器(信号处理)
作者
Jingyi Zheng,Mingli Liang,Sujata Sinha,Linqiang Ge,Wei Yu,Arne D. Ekstrom,Fushing Hsieh
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (4): 1549-1559 被引量:21
标识
DOI:10.1109/jbhi.2021.3110267
摘要

Electroencephalography (EEG) is a brain imaging approach that has been widely used in neuroscience and clinical settings. The conventional EEG analyses usually require pre-defined frequency bands when characterizing neural oscillations and extracting features for classifying EEG signals. However, neural responses are naturally heterogeneous by showing variations in frequency bands of brainwaves and peak frequencies of oscillatory modes across individuals. Fail to account for such variations might result in information loss and classifiers with low accuracy but high variation across individuals. To address these issues, we present a systematic time-frequency analysis approach for analyzing scalp EEG signals. In particular, we propose a data-driven method to compute the subject-specific frequency bands for brain oscillations via Hilbert-Huang Transform, lifting the restriction of using fixed frequency bands for all subjects. Then, we propose two novel metrics to quantify the power and frequency aspects of brainwaves represented by sub-signals decomposed from the EEG signals. The effectiveness of the proposed metrics are tested on two scalp EEG datasets and compared with four commonly used features sets extracted from wavelet and Hilbert-Huang Transform. The validation results show that the proposed metrics are more discriminatory than other features leading to accuracies in the range of 94.93% to 99.84%. Besides classification, the proposed metrics show great potential in quantification of neural oscillations and serving as biomarkers in the neuroscience research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chunxue发布了新的文献求助10
刚刚
yu完成签到,获得积分10
刚刚
1秒前
小二郎应助夜雨声烦采纳,获得10
2秒前
Meyako完成签到 ,获得积分10
2秒前
qing完成签到,获得积分10
2秒前
blank12发布了新的文献求助20
3秒前
李健应助南nan采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
WJ发布了新的文献求助10
5秒前
6秒前
隐形曼青应助哭泣的三问采纳,获得10
7秒前
划一道掌纹完成签到,获得积分10
7秒前
5552222发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
GuangChe应助tao采纳,获得10
8秒前
赘婿应助huangllza采纳,获得10
8秒前
8秒前
Chunxue完成签到,获得积分10
9秒前
脑洞疼应助opovopo采纳,获得30
9秒前
10秒前
大可发布了新的文献求助10
10秒前
syyy发布了新的文献求助30
10秒前
jiangliuer发布了新的文献求助10
10秒前
科研通AI2S应助Sandy采纳,获得10
11秒前
狸宝的小果子完成签到 ,获得积分10
11秒前
优雅的薯片完成签到,获得积分20
11秒前
11秒前
明亮从梦发布了新的文献求助10
11秒前
llly完成签到,获得积分10
11秒前
SYX完成签到 ,获得积分10
11秒前
英俊中心发布了新的文献求助10
12秒前
12秒前
李振博发布了新的文献求助10
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954873
求助须知:如何正确求助?哪些是违规求助? 3500946
关于积分的说明 11101499
捐赠科研通 3231364
什么是DOI,文献DOI怎么找? 1786402
邀请新用户注册赠送积分活动 870037
科研通“疑难数据库(出版商)”最低求助积分说明 801771