神经炎症
CX3CR1型
神经退行性变
CX3CL1型
神经科学
神经保护
趋化因子
小胶质细胞
促炎细胞因子
生物
医学
趋化因子受体
疾病
炎症
免疫学
病理
作者
Meena S. Subbarayan,Aurélie Joly‐Amado,Paula C. Bickford,Kevin Nash
标识
DOI:10.1016/j.pharmthera.2021.107989
摘要
Neuroinflammation was initially thought of as a consequence of neurodegenerative disease pathology, but more recently it is becoming clear that it plays a significant role in the development and progression of disease. Thus, neuroinflammation is seen as a realistic and valuable therapeutic target for neurodegeneration. Neuroinflammation can be modulated by neuron-glial signaling through various soluble factors, and one such critical modulator is Fractalkine or C-X3-C Motif Chemokine Ligand 1 (CX3CL1). CX3CL1 is produced in neurons and is a unique chemokine that is initially translated as a transmembrane protein but can be proteolytically processed to generate a soluble chemokine. CX3CL1 has been shown to signal through its sole receptor CX3CR1, which is located on microglial cells within the central nervous system (CNS). Although both the membrane bound and soluble forms of CX3CL1 appear to interact with CX3CR1, they do seem to have different signaling capabilities. It is believed that the predominant function of CX3CL1 within the CNS is to reduce the proinflammatory response and many studies have shown neuroprotective effects. However, in some cases CX3CL1 appears to be promoting neurodegeneration. This review focusses on presenting a comprehensive overview of the complex nature of CX3CL1/CX3CR1 signaling in neurodegeneration and how it may present as a therapeutic in some neurodegenerative diseases but not others. The role of CX3CL1/CXCR1 is reviewed in the context of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), ischemia, retinopathies, spinal cord and neuropathic pain, traumatic brain injury, amyotrophic lateral sclerosis, multiple sclerosis, and epilepsy.
科研通智能强力驱动
Strongly Powered by AbleSci AI