Contrastive Self-Supervised Representation Learning for Sensing Signals from the Time-Frequency Perspective

计算机科学 人工智能 深度学习 卷积神经网络 特征学习 机器学习 监督学习 代表(政治) 人工神经网络 政治学 政治 法学
作者
Dongxin Liu,Tianshi Wang,Shengzhong Liu,Ruijie Wang,Shuochao Yao,Tarek Abdelzaher
出处
期刊:International Conference on Computer Communications and Networks 卷期号:: 1-10 被引量:28
标识
DOI:10.1109/icccn52240.2021.9522151
摘要

This paper presents a contrastive self-supervised representation learning framework that is new in being designed specifically for deep learning from frequency domain data. Contrastive self-supervised representation learning trains neural networks using mostly unlabeled data. It is motivated by the need to reduce the labeling burden of deep learning. In this paper, we are specifically interested in applying this approach to physical sensing scenarios, such as those arising in Internet-of-Things (IoT) applications. Deep neural networks have been widely utilized in IoT applications, but the performance of such models largely depends on the availability of large labeled datasets, which in turn entails significant training costs. Motivated by the success of contrastive self-supervised representation learning at substantially reducing the need for labeled data (mostly in areas of computer vision and natural language processing), there is growing interest in customizing the contrastive learning framework to IoT applications. Most existing work in that space approaches the problem from a time-domain perspective. However, IoT applications often measure physical phenomena, where the underlying processes (such as acceleration, vibration, or wireless signal propagation) are fundamentally a function of signal frequencies and thus have sparser and more compact representations in the frequency domain. Recently, this observation motivated the development of Short-Time Fourier Neural Networks (STFNets) that learn directly in the frequency domain, and were shown to offer large performance gains compared to Convolutional Neural Networks (CNNs) when designing supervised learning models for IoT tasks. Hence, in this paper, we introduce an STFNet-based Contrastive Self-supervised representation Learning framework (STF-CSL). STF-CSL takes both time-domain and frequency-domain features into consideration. We build the encoder using STFNet as the fundamental building block. We also apply both time-domain data augmentation and frequency-domain data augmentation during the self-supervised training process. We evaluate the resulting performance of STF-CSL on various human activity recognition tasks. The evaluation results demonstrate that STF-CSL significantly outperforms the time-domain based self-supervised approaches thereby substantially enhancing our ability to train deep neural networks from unlabeled data in IoT contexts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Akim应助单纯的雅香采纳,获得10
1秒前
2秒前
3秒前
成就的书包完成签到,获得积分10
4秒前
小疙瘩发布了新的文献求助10
4秒前
5秒前
metalmd发布了新的文献求助10
5秒前
5秒前
学术蠕虫发布了新的文献求助10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
sutharsons应助科研通管家采纳,获得30
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
pluto应助科研通管家采纳,获得10
8秒前
XShu发布了新的文献求助10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得30
8秒前
传奇3应助科研通管家采纳,获得30
8秒前
Owen应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
文艺明杰发布了新的文献求助100
10秒前
所所应助嘟嘟采纳,获得10
10秒前
12秒前
HMZ完成签到,获得积分10
12秒前
研友_LkYKJZ完成签到,获得积分10
12秒前
田様应助Khr1stINK采纳,获得10
12秒前
12秒前
风趣夜云完成签到,获得积分10
13秒前
13秒前
真实的一鸣完成签到,获得积分10
13秒前
调研昵称发布了新的文献求助50
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808