Contrastive Self-Supervised Representation Learning for Sensing Signals from the Time-Frequency Perspective

计算机科学 人工智能 深度学习 卷积神经网络 特征学习 机器学习 监督学习 代表(政治) 人工神经网络 政治学 政治 法学
作者
Dongxin Liu,Tianshi Wang,Shengzhong Liu,Ruijie Wang,Shuochao Yao,Tarek Abdelzaher
出处
期刊:International Conference on Computer Communications and Networks 卷期号:: 1-10 被引量:28
标识
DOI:10.1109/icccn52240.2021.9522151
摘要

This paper presents a contrastive self-supervised representation learning framework that is new in being designed specifically for deep learning from frequency domain data. Contrastive self-supervised representation learning trains neural networks using mostly unlabeled data. It is motivated by the need to reduce the labeling burden of deep learning. In this paper, we are specifically interested in applying this approach to physical sensing scenarios, such as those arising in Internet-of-Things (IoT) applications. Deep neural networks have been widely utilized in IoT applications, but the performance of such models largely depends on the availability of large labeled datasets, which in turn entails significant training costs. Motivated by the success of contrastive self-supervised representation learning at substantially reducing the need for labeled data (mostly in areas of computer vision and natural language processing), there is growing interest in customizing the contrastive learning framework to IoT applications. Most existing work in that space approaches the problem from a time-domain perspective. However, IoT applications often measure physical phenomena, where the underlying processes (such as acceleration, vibration, or wireless signal propagation) are fundamentally a function of signal frequencies and thus have sparser and more compact representations in the frequency domain. Recently, this observation motivated the development of Short-Time Fourier Neural Networks (STFNets) that learn directly in the frequency domain, and were shown to offer large performance gains compared to Convolutional Neural Networks (CNNs) when designing supervised learning models for IoT tasks. Hence, in this paper, we introduce an STFNet-based Contrastive Self-supervised representation Learning framework (STF-CSL). STF-CSL takes both time-domain and frequency-domain features into consideration. We build the encoder using STFNet as the fundamental building block. We also apply both time-domain data augmentation and frequency-domain data augmentation during the self-supervised training process. We evaluate the resulting performance of STF-CSL on various human activity recognition tasks. The evaluation results demonstrate that STF-CSL significantly outperforms the time-domain based self-supervised approaches thereby substantially enhancing our ability to train deep neural networks from unlabeled data in IoT contexts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小郑完成签到 ,获得积分10
刚刚
xy发布了新的文献求助10
1秒前
weilei完成签到,获得积分0
1秒前
hhhh777完成签到 ,获得积分10
1秒前
Fu完成签到,获得积分10
2秒前
乐观的水儿完成签到,获得积分10
2秒前
2秒前
斧王发布了新的文献求助10
2秒前
共享精神应助abc778采纳,获得10
3秒前
小满发布了新的文献求助30
4秒前
ashton完成签到,获得积分10
4秒前
wzx关闭了wzx文献求助
4秒前
现实的飞风完成签到 ,获得积分10
5秒前
orixero应助林林采纳,获得10
5秒前
乐乐应助人123456采纳,获得10
6秒前
8秒前
10秒前
10秒前
科研强完成签到,获得积分10
11秒前
12秒前
杨程羽完成签到 ,获得积分10
12秒前
希望天下0贩的0应助Shxu采纳,获得10
14秒前
xiaohei发布了新的文献求助10
14秒前
真是笨蛋吗完成签到,获得积分20
17秒前
majar发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
Yz完成签到 ,获得积分10
19秒前
Hello应助majar采纳,获得10
22秒前
赵敏发布了新的文献求助30
23秒前
浮游应助科研通管家采纳,获得10
23秒前
ding应助科研通管家采纳,获得20
23秒前
losy应助科研通管家采纳,获得10
23秒前
CipherSage应助科研通管家采纳,获得10
23秒前
深情安青应助科研通管家采纳,获得10
23秒前
酷波er应助科研通管家采纳,获得10
24秒前
英姑应助科研通管家采纳,获得10
24秒前
Lucas应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
称心曼安应助科研通管家采纳,获得10
24秒前
Akim应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425872
求助须知:如何正确求助?哪些是违规求助? 4539598
关于积分的说明 14169356
捐赠科研通 4457359
什么是DOI,文献DOI怎么找? 2444499
邀请新用户注册赠送积分活动 1435428
关于科研通互助平台的介绍 1412877