亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Contrastive Self-Supervised Representation Learning for Sensing Signals from the Time-Frequency Perspective

计算机科学 人工智能 深度学习 卷积神经网络 特征学习 机器学习 监督学习 代表(政治) 人工神经网络 政治学 政治 法学
作者
Dongxin Liu,Tianshi Wang,Shengzhong Liu,Ruijie Wang,Shuochao Yao,Tarek Abdelzaher
出处
期刊:International Conference on Computer Communications and Networks 卷期号:: 1-10 被引量:28
标识
DOI:10.1109/icccn52240.2021.9522151
摘要

This paper presents a contrastive self-supervised representation learning framework that is new in being designed specifically for deep learning from frequency domain data. Contrastive self-supervised representation learning trains neural networks using mostly unlabeled data. It is motivated by the need to reduce the labeling burden of deep learning. In this paper, we are specifically interested in applying this approach to physical sensing scenarios, such as those arising in Internet-of-Things (IoT) applications. Deep neural networks have been widely utilized in IoT applications, but the performance of such models largely depends on the availability of large labeled datasets, which in turn entails significant training costs. Motivated by the success of contrastive self-supervised representation learning at substantially reducing the need for labeled data (mostly in areas of computer vision and natural language processing), there is growing interest in customizing the contrastive learning framework to IoT applications. Most existing work in that space approaches the problem from a time-domain perspective. However, IoT applications often measure physical phenomena, where the underlying processes (such as acceleration, vibration, or wireless signal propagation) are fundamentally a function of signal frequencies and thus have sparser and more compact representations in the frequency domain. Recently, this observation motivated the development of Short-Time Fourier Neural Networks (STFNets) that learn directly in the frequency domain, and were shown to offer large performance gains compared to Convolutional Neural Networks (CNNs) when designing supervised learning models for IoT tasks. Hence, in this paper, we introduce an STFNet-based Contrastive Self-supervised representation Learning framework (STF-CSL). STF-CSL takes both time-domain and frequency-domain features into consideration. We build the encoder using STFNet as the fundamental building block. We also apply both time-domain data augmentation and frequency-domain data augmentation during the self-supervised training process. We evaluate the resulting performance of STF-CSL on various human activity recognition tasks. The evaluation results demonstrate that STF-CSL significantly outperforms the time-domain based self-supervised approaches thereby substantially enhancing our ability to train deep neural networks from unlabeled data in IoT contexts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
6秒前
18秒前
大模型应助更明采纳,获得10
25秒前
33秒前
VAE完成签到,获得积分10
38秒前
40秒前
46秒前
49秒前
53秒前
博博完成签到,获得积分10
55秒前
钢钢完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
曹燃发布了新的文献求助10
1分钟前
甜甜的紫菜完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
心灵美凝竹完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
xingsixs完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
JamesPei应助科研通管家采纳,获得10
3分钟前
4分钟前
Wang_JN完成签到 ,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
BOB完成签到 ,获得积分10
4分钟前
顾矜应助火星上的满天采纳,获得10
4分钟前
YifanWang完成签到,获得积分0
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960125
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128619
捐赠科研通 3238289
什么是DOI,文献DOI怎么找? 1789684
邀请新用户注册赠送积分活动 871846
科研通“疑难数据库(出版商)”最低求助积分说明 803069