Contrastive Self-Supervised Representation Learning for Sensing Signals from the Time-Frequency Perspective

计算机科学 人工智能 深度学习 卷积神经网络 特征学习 机器学习 监督学习 代表(政治) 人工神经网络 政治学 政治 法学
作者
Dongxin Liu,Tianshi Wang,Shengzhong (Frank) Liu,Ruijie Wang,Shuochao Yao,Tarek Abdelzaher
出处
期刊:International Conference on Computer Communications and Networks 被引量:6
标识
DOI:10.1109/icccn52240.2021.9522151
摘要

This paper presents a contrastive self-supervised representation learning framework that is new in being designed specifically for deep learning from frequency domain data. Contrastive self-supervised representation learning trains neural networks using mostly unlabeled data. It is motivated by the need to reduce the labeling burden of deep learning. In this paper, we are specifically interested in applying this approach to physical sensing scenarios, such as those arising in Internet-of-Things (IoT) applications. Deep neural networks have been widely utilized in IoT applications, but the performance of such models largely depends on the availability of large labeled datasets, which in turn entails significant training costs. Motivated by the success of contrastive self-supervised representation learning at substantially reducing the need for labeled data (mostly in areas of computer vision and natural language processing), there is growing interest in customizing the contrastive learning framework to IoT applications. Most existing work in that space approaches the problem from a time-domain perspective. However, IoT applications often measure physical phenomena, where the underlying processes (such as acceleration, vibration, or wireless signal propagation) are fundamentally a function of signal frequencies and thus have sparser and more compact representations in the frequency domain. Recently, this observation motivated the development of Short-Time Fourier Neural Networks (STFNets) that learn directly in the frequency domain, and were shown to offer large performance gains compared to Convolutional Neural Networks (CNNs) when designing supervised learning models for IoT tasks. Hence, in this paper, we introduce an STFNet-based Contrastive Self-supervised representation Learning framework (STF-CSL). STF-CSL takes both time-domain and frequency-domain features into consideration. We build the encoder using STFNet as the fundamental building block. We also apply both time-domain data augmentation and frequency-domain data augmentation during the self-supervised training process. We evaluate the resulting performance of STF-CSL on various human activity recognition tasks. The evaluation results demonstrate that STF-CSL significantly outperforms the time-domain based self-supervised approaches thereby substantially enhancing our ability to train deep neural networks from unlabeled data in IoT contexts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yg发布了新的文献求助10
1秒前
共享精神应助哈比采纳,获得10
2秒前
赵哥发布了新的文献求助10
3秒前
1459完成签到,获得积分10
3秒前
lin发布了新的文献求助10
5秒前
5秒前
5秒前
小蘑菇应助许吖吖采纳,获得10
5秒前
情怀应助yingtiao采纳,获得10
6秒前
brotherpeng完成签到 ,获得积分10
9秒前
科研通AI2S应助Xiang采纳,获得10
9秒前
酷波er应助Xiang采纳,获得10
9秒前
9秒前
9秒前
mei完成签到 ,获得积分10
10秒前
10秒前
zzc完成签到,获得积分10
10秒前
10秒前
11秒前
安仔完成签到,获得积分10
11秒前
自然盼柳发布了新的文献求助10
11秒前
11秒前
幸福果汁完成签到,获得积分10
13秒前
畅快城发布了新的文献求助10
14秒前
可乐鸡翅发布了新的文献求助10
15秒前
李健应助格格巫采纳,获得10
16秒前
张小杰发布了新的文献求助10
17秒前
科研通AI2S应助典雅的静采纳,获得10
18秒前
SciGPT应助卡卡罗特采纳,获得10
19秒前
自然盼柳完成签到,获得积分20
19秒前
岚岚完成签到,获得积分10
21秒前
21秒前
Steven完成签到,获得积分10
21秒前
kyle完成签到 ,获得积分10
22秒前
月光入梦完成签到 ,获得积分10
22秒前
22秒前
高海龙完成签到 ,获得积分10
23秒前
天御雪完成签到,获得积分10
23秒前
坚强丹雪完成签到,获得积分10
24秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168208
求助须知:如何正确求助?哪些是违规求助? 2819559
关于积分的说明 7927087
捐赠科研通 2479402
什么是DOI,文献DOI怎么找? 1320787
科研通“疑难数据库(出版商)”最低求助积分说明 632907
版权声明 602458