Contrastive Self-Supervised Representation Learning for Sensing Signals from the Time-Frequency Perspective

计算机科学 人工智能 深度学习 卷积神经网络 特征学习 机器学习 监督学习 代表(政治) 人工神经网络 政治学 政治 法学
作者
Dongxin Liu,Tianshi Wang,Shengzhong Liu,Ruijie Wang,Shuochao Yao,Tarek Abdelzaher
出处
期刊:International Conference on Computer Communications and Networks 卷期号:: 1-10 被引量:28
标识
DOI:10.1109/icccn52240.2021.9522151
摘要

This paper presents a contrastive self-supervised representation learning framework that is new in being designed specifically for deep learning from frequency domain data. Contrastive self-supervised representation learning trains neural networks using mostly unlabeled data. It is motivated by the need to reduce the labeling burden of deep learning. In this paper, we are specifically interested in applying this approach to physical sensing scenarios, such as those arising in Internet-of-Things (IoT) applications. Deep neural networks have been widely utilized in IoT applications, but the performance of such models largely depends on the availability of large labeled datasets, which in turn entails significant training costs. Motivated by the success of contrastive self-supervised representation learning at substantially reducing the need for labeled data (mostly in areas of computer vision and natural language processing), there is growing interest in customizing the contrastive learning framework to IoT applications. Most existing work in that space approaches the problem from a time-domain perspective. However, IoT applications often measure physical phenomena, where the underlying processes (such as acceleration, vibration, or wireless signal propagation) are fundamentally a function of signal frequencies and thus have sparser and more compact representations in the frequency domain. Recently, this observation motivated the development of Short-Time Fourier Neural Networks (STFNets) that learn directly in the frequency domain, and were shown to offer large performance gains compared to Convolutional Neural Networks (CNNs) when designing supervised learning models for IoT tasks. Hence, in this paper, we introduce an STFNet-based Contrastive Self-supervised representation Learning framework (STF-CSL). STF-CSL takes both time-domain and frequency-domain features into consideration. We build the encoder using STFNet as the fundamental building block. We also apply both time-domain data augmentation and frequency-domain data augmentation during the self-supervised training process. We evaluate the resulting performance of STF-CSL on various human activity recognition tasks. The evaluation results demonstrate that STF-CSL significantly outperforms the time-domain based self-supervised approaches thereby substantially enhancing our ability to train deep neural networks from unlabeled data in IoT contexts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韦灵珊发布了新的文献求助10
1秒前
研友_8K2QJZ发布了新的文献求助10
3秒前
坚强的秋柿完成签到,获得积分10
4秒前
OnlyHarbour完成签到,获得积分10
6秒前
慕青应助山与采纳,获得10
7秒前
8秒前
8秒前
9秒前
10秒前
佟白易发布了新的文献求助10
11秒前
11秒前
12秒前
14秒前
ari发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
佟白易完成签到,获得积分10
16秒前
江恋完成签到,获得积分10
17秒前
大模型应助宋早楠采纳,获得10
18秒前
19秒前
刻苦小丸子完成签到,获得积分0
19秒前
19秒前
XX完成签到,获得积分10
19秒前
小二郎应助坚定的戎采纳,获得10
19秒前
19秒前
21秒前
滟滟完成签到,获得积分10
21秒前
LXZ完成签到,获得积分10
21秒前
研友_8K2QJZ发布了新的文献求助10
22秒前
22秒前
科研通AI6应助契梦Diana采纳,获得10
23秒前
JZJ完成签到,获得积分20
23秒前
ckzsj发布了新的文献求助10
23秒前
23秒前
所所应助ari采纳,获得10
23秒前
隐形曼青应助坚强的秋柿采纳,获得10
26秒前
刘MTY发布了新的文献求助10
26秒前
27秒前
小顾发布了新的文献求助10
28秒前
Guko发布了新的文献求助10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5124206
求助须知:如何正确求助?哪些是违规求助? 4328520
关于积分的说明 13487475
捐赠科研通 4162916
什么是DOI,文献DOI怎么找? 2281925
邀请新用户注册赠送积分活动 1283217
关于科研通互助平台的介绍 1222406