Understanding interdisciplinary knowledge integration through citance analysis: A case study on eHealth

知识整合 计算机科学 领域(数学) 数据科学 知识管理 背景(考古学) 知识体系 知识抽取 领域知识 数据挖掘 数学 生物 古生物学 纯数学
作者
Shiyun Wang,Jin Mao,Kun Lü,Yongqiang Cao,Gang Li
出处
期刊:Journal of Informetrics [Elsevier]
卷期号:15 (4): 101214-101214 被引量:14
标识
DOI:10.1016/j.joi.2021.101214
摘要

Recent research has shifted to investigating knowledge integration in an interdisciplinary field and measuring the interdisciplinarity. Conventional citation analysis does not consider the context of citations, which limits the understanding of interdisciplinary knowledge integration. This study introduces a novel analytical framework to characterize interdisciplinary knowledge integration by both the content, i.e., integrated knowledge phrases (IKPs), and location of citances (i.e., citing sentences) in addition to citations. Seven knowledge categories are used to classify IKPs, including Research Subject, Theory, Research Methodology, Technology, Human Entity, Data, and Others. The eHealth field is explored as an exemplar interdisciplinary field in the case study. The result reveals that the ranks of source disciplines quantified by the integrated knowledge phrases are different from those by citations, especially in terms of average knowledge integration density. The distributions of the IKPs over the knowledge categories differ among source disciplines, indicating their different contributions to knowledge integration of eHealth field. The knowledge from adjacent disciplines is integrated into the field faster than that from other disciplines. Knowledge distributions over sections of articles are also different among source disciplines, and a correlation between knowledge categories and the sections they were used is observed. The analytical framework offers a way to better understand an interdisciplinary field by disclosing the characteristics of interdisciplinary knowledge integration from the perspective of knowledge content and usage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
越来越好完成签到,获得积分10
刚刚
2秒前
2秒前
zhu完成签到,获得积分20
2秒前
suka发布了新的文献求助10
2秒前
上官若男应助杨春天采纳,获得10
4秒前
戾鸢爱吃饭完成签到,获得积分10
4秒前
儒雅太君发布了新的文献求助10
5秒前
zack完成签到,获得积分10
5秒前
充电宝应助yyq617569158采纳,获得30
5秒前
zhu发布了新的文献求助10
5秒前
5秒前
华仔应助友好亚男采纳,获得10
5秒前
后陡门的夏天完成签到 ,获得积分10
7秒前
7秒前
didida完成签到,获得积分10
7秒前
xinyi发布了新的文献求助10
8秒前
8秒前
9秒前
JIU夭完成签到,获得积分10
9秒前
10秒前
10秒前
manman完成签到,获得积分10
10秒前
10秒前
hgl123发布了新的文献求助10
11秒前
11秒前
钱嘉裕完成签到 ,获得积分10
11秒前
木仔发布了新的文献求助30
12秒前
13秒前
divedown发布了新的文献求助10
13秒前
万能图书馆应助yyh采纳,获得10
13秒前
专注学习发布了新的文献求助10
14秒前
jwhardaway发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
杨春天发布了新的文献求助10
16秒前
斯文败类应助wwuxinhui采纳,获得10
16秒前
儒雅太君完成签到,获得积分10
16秒前
17秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157989
求助须知:如何正确求助?哪些是违规求助? 2809366
关于积分的说明 7881582
捐赠科研通 2467822
什么是DOI,文献DOI怎么找? 1313728
科研通“疑难数据库(出版商)”最低求助积分说明 630522
版权声明 601943