修正案
生物炭
土壤改良剂
环境化学
化学
肥料
有机质
环境工程
环境科学
土壤水分
土壤科学
政治学
热解
有机化学
法学
作者
Lixun Zhang,Yuntao Guan
标识
DOI:10.1016/j.jhazmat.2021.127154
摘要
Agricultural sustainability is challenging because of increasingly serious and co-existing issues, e.g., poor nitrogen-fertilizer use and heavy metal pollution. Herein, we introduced a new poly(acrylic acid)-grafted chitosan and biochar composite (PAA/CTS/BC) for soil amendment, and provided a first microbial insight into how PAA/CTS/BC amendment simultaneously improved nitrogen cycling and immobilized heavy metals. Our results suggest that the PAA/CTS/BC amendment significantly promoted soil ammonium retention, and reduced nitrate accumulation, nitrous oxide emission and ammonia volatilization during the rice cultivation. The availability of various heavy metals (Fe, Mn, Cu, Zn, Ni, Pb, Cr, and As) markedly decreased in the PAA/CTS/BC amended soil, thereby reducing their accumulation in rice root. The PAA/CTS/BC amendment significantly altered the structure and function of soil microbial communities. Importantly, the co-occurrence networks of microbial communities became more complex and function-specific after PAA/CTS/BC addition. For example, the keystone species related to organic matter degradation, denitrification, and plant resistance to pathogen or stresses were enriched within the network. In addition to direct adsorption, the effects of PAA/CTS/BC on shaping microbial communities played dominant roles in the soil amendment. Our findings provide a promising strategy of simultaneous nitrogen-use improvement and heavy metal immobilization for achieving crop production improvement, pollution control, and climate change mitigation.
科研通智能强力驱动
Strongly Powered by AbleSci AI