Privacy-preserving Density-based Clustering

数据库扫描 聚类分析 计算机科学 外包 数据挖掘 私人信息检索 协议(科学) 服务器 CURE数据聚类算法 人工智能 模糊聚类 计算机安全 计算机网络 医学 政治学 病理 法学 替代医学
作者
Beyza Bozdemir,Sébastien Canard,Orhan Ermiş,Helen Möllering,Melek Önen,Thomas Schneider
标识
DOI:10.1145/3433210.3453104
摘要

Clustering is an unsupervised machine learning technique that outputs clusters containing similar data items. In this work, we investigate privacy-preserving density-based clustering which is, for example, used in financial analytics and medical diagnosis. When (multiple) data owners collaborate or outsource the computation, privacy concerns arise. To address this problem, we design, implement, and evaluate the first practical and fully private density-based clustering scheme based on secure two-party computation. Our protocol privately executes the DBSCAN algorithm without disclosing any information (including the number and size of clusters). It can be used for private clustering between two parties as well as for private outsourcing of an arbitrary number of data owners to two non-colluding servers. Our implementation of the DBSCAN algorithm privately clusters data sets with 400 elements in 7 minutes on commodity hardware. Thereby, it flexibly determines the number of required clusters and is insensitive to outliers, while being only factor 19x slower than today's fastest private K-means protocol (Mohassel et al., PETS'20) which can only be used for specific data sets. We then show how to transfer our newly designed protocol to related clustering algorithms by introducing a private approximation of the TRACLUS algorithm for trajectory clustering which has interesting real-world applications like financial time series forecasts and the investigation of the spread of a disease like COVID-19.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
李健应助日拱一卒采纳,获得10
刚刚
Hello应助heisa采纳,获得10
1秒前
吴青应助卤笋采纳,获得10
4秒前
卡皮巴拉发布了新的文献求助10
5秒前
6秒前
丘比特应助李lll采纳,获得10
7秒前
8秒前
8秒前
10秒前
Return应助三金采纳,获得10
11秒前
FY发布了新的文献求助10
11秒前
11秒前
小太阳发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
CC完成签到,获得积分10
15秒前
15秒前
15秒前
王海涛发布了新的文献求助10
16秒前
zz完成签到,获得积分10
16秒前
安陌煜发布了新的文献求助30
17秒前
大辉完成签到 ,获得积分10
17秒前
19秒前
张对对发布了新的文献求助10
19秒前
YifanWang应助FY采纳,获得10
20秒前
负责的雪碧应助FY采纳,获得10
20秒前
21秒前
23秒前
阳光怀亦发布了新的文献求助10
25秒前
我是老大应助安陌煜采纳,获得30
25秒前
bjyx完成签到,获得积分10
25秒前
26秒前
英俊的铭应助含灵巨贼采纳,获得10
27秒前
27秒前
王海涛完成签到,获得积分10
29秒前
丹丹发布了新的文献求助10
30秒前
猫罐头完成签到,获得积分10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459147
求助须知:如何正确求助?哪些是违规求助? 3053698
关于积分的说明 9037829
捐赠科研通 2742963
什么是DOI,文献DOI怎么找? 1504592
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694644