Machine learning for the early prediction of head-up tilt testing outcome

仰卧位 可解释性 特征选择 人工智能 计算机科学 机器学习 选择(遗传算法) 接收机工作特性 特征(语言学) 灵敏度(控制系统) 模式识别(心理学) 医学 工程类 内科学 语言学 电子工程 哲学
作者
Zhengling He,Lidong Du,Song Du,Bin Wu,Zhiqi Fan,Binmu Xin,Xianxiang Chen,Zhen Fang,Jiexin Liu
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:69: 102904-102904 被引量:3
标识
DOI:10.1016/j.bspc.2021.102904
摘要

Head-up Tilt Testing (HUTT) is a widely used medical tool for the diagnosis of unexplained syncope. Current HUTT protocols, however, are time-consuming. This study aims to investigate the feasibility of using hemodynamic monitoring and machine learning techniques to achieve early prediction of HUTT outcome for syncope patients. A total of 209 subjects participated in this study from June 2016 to November 2019, and hemodynamic signals were collected via a Finometer device (Finapres Medical Systems BV, The Netherlands). We extracted features with a total dimension of 4,313 from the early 18 min (5 min of supine position and 13 min of tilting position). A genetic algorithm (GA) was introduced for feature selection, and an index called the selection ratio (SR) was proposed to further analyze the GA selection result. Four machine learning models were established for this classification task, and their performance results were compared. The maximum tilting duration was shortened from 35 min to 13 min, and a best area under receiver operating characteristic curve of 0.94 via 5-fold cross-validation was obtained by the SVR model, with a sensitivity of 0.86 and a specificity of 0.82. The performance of all algorithms improved after feature selection by GA. The proposed approach is a promising method to shorten the diagnosis time compared to the existing diagnosis process. The GA introduced in this study is an effective feature selection tool to improve model performance. The proposed SR index effectively contributes to the usability and interpretability of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mumu_完成签到 ,获得积分10
刚刚
1秒前
leomei发布了新的文献求助10
1秒前
1秒前
Anne应助高兴小熊猫采纳,获得10
2秒前
霍三石完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
可爱小哪吒完成签到,获得积分10
7秒前
8秒前
123完成签到,获得积分10
9秒前
脸小呆呆完成签到 ,获得积分10
9秒前
何哈哈发布了新的文献求助10
10秒前
11秒前
Moscrol完成签到,获得积分10
11秒前
昵称发布了新的文献求助30
11秒前
11秒前
11秒前
一心发布了新的文献求助10
12秒前
轻松冰旋发布了新的文献求助10
13秒前
13秒前
zsl完成签到 ,获得积分10
14秒前
14秒前
15秒前
mg发布了新的文献求助10
15秒前
邓邓子发布了新的文献求助10
15秒前
15秒前
铁手无情发布了新的文献求助10
17秒前
婧婧完成签到 ,获得积分10
17秒前
科目三应助Jennifer采纳,获得10
18秒前
高大晓丝完成签到 ,获得积分10
18秒前
18秒前
星星之火发布了新的文献求助10
18秒前
ycc发布了新的文献求助10
20秒前
大模型应助liu采纳,获得10
20秒前
博qb完成签到,获得积分10
20秒前
冯劫完成签到,获得积分10
21秒前
21秒前
cjx发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512208
求助须知:如何正确求助?哪些是违规求助? 3094667
关于积分的说明 9224183
捐赠科研通 2789467
什么是DOI,文献DOI怎么找? 1530709
邀请新用户注册赠送积分活动 711048
科研通“疑难数据库(出版商)”最低求助积分说明 706518