Structure-Aware Motion Deblurring Using Multi-Adversarial Optimized CycleGAN

去模糊 计算机科学 人工智能 核(代数) 图像复原 模式识别(心理学) 图像(数学) 对抗制 计算机视觉 卷积神经网络 图像处理 数学 组合数学
作者
Yang Wen,Jie Chen,Bin Sheng,Zhihua Chen,Ping Li,Ping Tan,Tong‐Yee Lee
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 6142-6155 被引量:34
标识
DOI:10.1109/tip.2021.3092814
摘要

Recently, Convolutional Neural Networks (CNNs) have achieved great improvements in blind image motion deblurring. However, most existing image deblurring methods require a large amount of paired training data and fail to maintain satisfactory structural information, which greatly limits their application scope. In this paper, we present an unsupervised image deblurring method based on a multi-adversarial optimized cycle-consistent generative adversarial network (CycleGAN). Although original CycleGAN can handle unpaired training data well, the generated high-resolution images are probable to lose content and structure information. To solve this problem, we utilize a multi-adversarial mechanism based on CycleGAN for blind motion deblurring to generate high-resolution images iteratively. In this multi-adversarial manner, the hidden layers of the generator are gradually supervised, and the implicit refinement is carried out to generate high-resolution images continuously. Meanwhile, we also introduce the structure-aware mechanism to enhance the structure and detail retention ability of the multi-adversarial network for deblurring by taking the edge map as guidance information and adding multi-scale edge constraint functions. Our approach not only avoids the strict need for paired training data and the errors caused by blur kernel estimation, but also maintains the structural information better with multi-adversarial learning and structure-aware mechanism. Comprehensive experiments on several benchmarks have shown that our approach prevails the state-of-the-art methods for blind image motion deblurring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WW完成签到,获得积分10
刚刚
SciGPT应助genandtal采纳,获得10
刚刚
酷波er应助yxsh采纳,获得10
1秒前
1秒前
Ricardo完成签到,获得积分10
6秒前
6秒前
科研通AI2S应助ayu采纳,获得10
7秒前
ShowMaker应助ATom采纳,获得30
7秒前
领导范儿应助don采纳,获得10
8秒前
9秒前
11秒前
石昊关注了科研通微信公众号
12秒前
黎乐乐发布了新的文献求助10
12秒前
15秒前
16秒前
lucky发布了新的文献求助10
16秒前
LX完成签到,获得积分10
17秒前
17秒前
住在魔仙堡的鱼完成签到 ,获得积分10
18秒前
烂漫夜梅发布了新的文献求助10
20秒前
叶子完成签到 ,获得积分10
20秒前
桓某人发布了新的文献求助10
21秒前
fifteen发布了新的文献求助10
21秒前
23秒前
周琦发布了新的文献求助10
24秒前
奔跑的神灯完成签到 ,获得积分10
24秒前
25秒前
小二郎应助雪凝清霜采纳,获得10
25秒前
iiis完成签到,获得积分10
25秒前
西红柿炒番茄应助xike采纳,获得60
25秒前
EasonYao完成签到 ,获得积分10
27秒前
慕青应助自由青柏采纳,获得10
28秒前
30秒前
阿诗墨鱼完成签到,获得积分10
30秒前
欢喜发卡发布了新的文献求助10
31秒前
Hana发布了新的文献求助10
31秒前
orixero应助wkwkkwk采纳,获得10
32秒前
天天快乐应助Ethan采纳,获得10
32秒前
嘟嘟嘟发布了新的文献求助10
33秒前
小小猪完成签到,获得积分10
34秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150268
求助须知:如何正确求助?哪些是违规求助? 2801406
关于积分的说明 7844576
捐赠科研通 2458893
什么是DOI,文献DOI怎么找? 1308793
科研通“疑难数据库(出版商)”最低求助积分说明 628566
版权声明 601721