Structure-Aware Motion Deblurring Using Multi-Adversarial Optimized CycleGAN

去模糊 计算机科学 人工智能 核(代数) 图像复原 模式识别(心理学) 图像(数学) 对抗制 计算机视觉 卷积神经网络 图像处理 数学 组合数学
作者
Yang Wen,Jie Chen,Bin Sheng,Zhihua Chen,Ping Li,Ping Tan,Tong‐Yee Lee
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 6142-6155 被引量:34
标识
DOI:10.1109/tip.2021.3092814
摘要

Recently, Convolutional Neural Networks (CNNs) have achieved great improvements in blind image motion deblurring. However, most existing image deblurring methods require a large amount of paired training data and fail to maintain satisfactory structural information, which greatly limits their application scope. In this paper, we present an unsupervised image deblurring method based on a multi-adversarial optimized cycle-consistent generative adversarial network (CycleGAN). Although original CycleGAN can handle unpaired training data well, the generated high-resolution images are probable to lose content and structure information. To solve this problem, we utilize a multi-adversarial mechanism based on CycleGAN for blind motion deblurring to generate high-resolution images iteratively. In this multi-adversarial manner, the hidden layers of the generator are gradually supervised, and the implicit refinement is carried out to generate high-resolution images continuously. Meanwhile, we also introduce the structure-aware mechanism to enhance the structure and detail retention ability of the multi-adversarial network for deblurring by taking the edge map as guidance information and adding multi-scale edge constraint functions. Our approach not only avoids the strict need for paired training data and the errors caused by blur kernel estimation, but also maintains the structural information better with multi-adversarial learning and structure-aware mechanism. Comprehensive experiments on several benchmarks have shown that our approach prevails the state-of-the-art methods for blind image motion deblurring.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助Khr1stINK采纳,获得10
刚刚
刚刚
刚刚
考博圣体完成签到,获得积分10
1秒前
gf完成签到,获得积分10
1秒前
Tsuki完成签到 ,获得积分10
1秒前
小马甲应助平淡的白云采纳,获得10
1秒前
冷月寒寒大魔王完成签到,获得积分20
1秒前
1秒前
今后应助雪松采纳,获得10
2秒前
2秒前
鲸鱼发布了新的文献求助10
2秒前
2秒前
爆米花应助干净冬莲采纳,获得10
2秒前
2秒前
3秒前
3秒前
quan发布了新的文献求助10
3秒前
叮当完成签到,获得积分20
3秒前
3秒前
4秒前
云野华完成签到,获得积分10
4秒前
ysd完成签到,获得积分10
4秒前
emmaguo713完成签到,获得积分10
4秒前
4秒前
诚心寄灵发布了新的文献求助10
4秒前
τ涛发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
Tammy发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
标致的坤完成签到,获得积分10
6秒前
6秒前
梅子甜酒发布了新的文献求助10
6秒前
响彻云霄发布了新的文献求助10
6秒前
xh96发布了新的文献求助10
7秒前
7秒前
X_X发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482