Early Safety Warnings for Long-Distance Pipelines: A Distributed Optical Fiber Sensor Machine Learning Approach

计算机科学 预警系统 管道运输 管道(软件) 人工智能 噪音(视频) 实时计算 普遍性(动力系统) 模式识别(心理学) 机器学习 数据挖掘 工程类 电信 物理 图像(数学) 环境工程 量子力学 程序设计语言
作者
Yiyuan Yang,Yi Li,Taojia Zhang,Yan Zhou,Haifeng Zhang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (17): 14991-14999 被引量:27
标识
DOI:10.1609/aaai.v35i17.17759
摘要

Automated pipeline safety early warning (PSEW) systems are designed to automatically identify and locate third-party damage events on oil and gas pipelines. They are intended to replace traditional, inefficient manual inspection methods. However, current PSEW methods cannot achieve universality for various complex environments because they are sensitive to the spatiotemporal stability of the signal obtained by its distributed sensors at various locations and times. Our research aimed to improve the accuracy of long-distance oil–gas PSEW systems through machine learning. In this paper, we propose a novel real-time action recognition method for long-distance PSEW systems based on a coherent Rayleigh scattering distributed optical fiber sensor. More specifically, we put forward two complementary feature calculation methods to describe signals and build a new action recognition deep learning network based on those features. Encouraging empirical results on the data collected at a real location confirm that the features can effectively describe signals in an environment with strong noise and weak signals, and the entire approach can identify and locate third-party damage events quickly under various hardware conditions with accuracies of 99.26% (500 Hz) and 97.20% (100 Hz). More generically, our method can be applied to other fields as well.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助小易采纳,获得10
刚刚
lxt完成签到,获得积分10
2秒前
4秒前
4秒前
怜然关注了科研通微信公众号
6秒前
情怀应助李杰采纳,获得10
8秒前
所所应助天天开心采纳,获得10
8秒前
初一发布了新的文献求助10
8秒前
赘婿应助万松辉采纳,获得10
8秒前
9秒前
ysws完成签到,获得积分10
10秒前
Orange应助乐观的颦采纳,获得10
10秒前
完美世界应助June采纳,获得10
12秒前
13秒前
13秒前
闪闪完成签到,获得积分10
15秒前
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
15秒前
所所应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得20
16秒前
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
16秒前
科目三应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
慎默应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
18秒前
冷酷夏真完成签到 ,获得积分10
20秒前
20秒前
悦耳沛槐完成签到,获得积分10
20秒前
万松辉发布了新的文献求助10
23秒前
legend完成签到,获得积分0
24秒前
怜然发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073