Early Safety Warnings for Long-Distance Pipelines: A Distributed Optical Fiber Sensor Machine Learning Approach

计算机科学 预警系统 管道运输 管道(软件) 人工智能 噪音(视频) 实时计算 普遍性(动力系统) 模式识别(心理学) 机器学习 数据挖掘 工程类 电信 物理 图像(数学) 环境工程 量子力学 程序设计语言
作者
Yiyuan Yang,Yi Li,Taojia Zhang,Yan Zhou,Haifeng Zhang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (17): 14991-14999 被引量:27
标识
DOI:10.1609/aaai.v35i17.17759
摘要

Automated pipeline safety early warning (PSEW) systems are designed to automatically identify and locate third-party damage events on oil and gas pipelines. They are intended to replace traditional, inefficient manual inspection methods. However, current PSEW methods cannot achieve universality for various complex environments because they are sensitive to the spatiotemporal stability of the signal obtained by its distributed sensors at various locations and times. Our research aimed to improve the accuracy of long-distance oil–gas PSEW systems through machine learning. In this paper, we propose a novel real-time action recognition method for long-distance PSEW systems based on a coherent Rayleigh scattering distributed optical fiber sensor. More specifically, we put forward two complementary feature calculation methods to describe signals and build a new action recognition deep learning network based on those features. Encouraging empirical results on the data collected at a real location confirm that the features can effectively describe signals in an environment with strong noise and weak signals, and the entire approach can identify and locate third-party damage events quickly under various hardware conditions with accuracies of 99.26% (500 Hz) and 97.20% (100 Hz). More generically, our method can be applied to other fields as well.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mjn404发布了新的文献求助10
刚刚
立里发布了新的文献求助10
1秒前
小红书求接接接接一篇完成签到,获得积分10
3秒前
小艺艺发布了新的文献求助10
3秒前
蔡蝶蝶给小田心的求助进行了留言
3秒前
4秒前
跳跃毒娘发布了新的文献求助10
4秒前
彭于晏应助youyou采纳,获得30
4秒前
焦焦关注了科研通微信公众号
4秒前
5秒前
5秒前
孤独不斜完成签到,获得积分10
5秒前
6秒前
8秒前
吴彦祖发布了新的文献求助10
10秒前
小芳应助Dr大壮采纳,获得10
10秒前
Ma发布了新的文献求助10
11秒前
乐乐应助aka2012采纳,获得10
12秒前
13秒前
太阳发布了新的文献求助10
14秒前
14秒前
zhanjl13完成签到,获得积分10
15秒前
JYX完成签到 ,获得积分10
15秒前
懒洋洋tzy完成签到 ,获得积分10
16秒前
17秒前
17秒前
wanci应助mjn404采纳,获得10
19秒前
19秒前
柠檬小白完成签到,获得积分10
19秒前
英俊的铭应助太阳采纳,获得10
20秒前
21秒前
22秒前
23秒前
23秒前
Dr大壮完成签到,获得积分10
24秒前
2222完成签到,获得积分10
26秒前
yihaiqin发布了新的文献求助10
26秒前
枫叶-ZqqC发布了新的文献求助10
27秒前
yzf完成签到,获得积分10
28秒前
慕青应助怕黑的擎采纳,获得10
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309624
求助须知:如何正确求助?哪些是违规求助? 2942923
关于积分的说明 8511679
捐赠科研通 2618018
什么是DOI,文献DOI怎么找? 1430760
科研通“疑难数据库(出版商)”最低求助积分说明 664249
邀请新用户注册赠送积分活动 649437