Early Safety Warnings for Long-Distance Pipelines: A Distributed Optical Fiber Sensor Machine Learning Approach

计算机科学 预警系统 管道运输 管道(软件) 人工智能 噪音(视频) 实时计算 普遍性(动力系统) 模式识别(心理学) 机器学习 数据挖掘 工程类 电信 物理 量子力学 环境工程 图像(数学) 程序设计语言
作者
Yiyuan Yang,Yi Li,Taojia Zhang,Yan Zhou,Haifeng Zhang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (17): 14991-14999 被引量:27
标识
DOI:10.1609/aaai.v35i17.17759
摘要

Automated pipeline safety early warning (PSEW) systems are designed to automatically identify and locate third-party damage events on oil and gas pipelines. They are intended to replace traditional, inefficient manual inspection methods. However, current PSEW methods cannot achieve universality for various complex environments because they are sensitive to the spatiotemporal stability of the signal obtained by its distributed sensors at various locations and times. Our research aimed to improve the accuracy of long-distance oil–gas PSEW systems through machine learning. In this paper, we propose a novel real-time action recognition method for long-distance PSEW systems based on a coherent Rayleigh scattering distributed optical fiber sensor. More specifically, we put forward two complementary feature calculation methods to describe signals and build a new action recognition deep learning network based on those features. Encouraging empirical results on the data collected at a real location confirm that the features can effectively describe signals in an environment with strong noise and weak signals, and the entire approach can identify and locate third-party damage events quickly under various hardware conditions with accuracies of 99.26% (500 Hz) and 97.20% (100 Hz). More generically, our method can be applied to other fields as well.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
CodeCraft应助王文华采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
阿伟1999发布了新的文献求助10
3秒前
汉堡包应助hostghost采纳,获得10
4秒前
5秒前
yizhiGao发布了新的文献求助10
5秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980251
求助须知:如何正确求助?哪些是违规求助? 3524205
关于积分的说明 11220347
捐赠科研通 3261655
什么是DOI,文献DOI怎么找? 1800851
邀请新用户注册赠送积分活动 879332
科研通“疑难数据库(出版商)”最低求助积分说明 807234