Early Safety Warnings for Long-Distance Pipelines: A Distributed Optical Fiber Sensor Machine Learning Approach

计算机科学 预警系统 管道运输 管道(软件) 人工智能 噪音(视频) 实时计算 普遍性(动力系统) 模式识别(心理学) 机器学习 数据挖掘 工程类 电信 物理 图像(数学) 环境工程 量子力学 程序设计语言
作者
Yiyuan Yang,Yi Li,Taojia Zhang,Yan Zhou,Haifeng Zhang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (17): 14991-14999 被引量:27
标识
DOI:10.1609/aaai.v35i17.17759
摘要

Automated pipeline safety early warning (PSEW) systems are designed to automatically identify and locate third-party damage events on oil and gas pipelines. They are intended to replace traditional, inefficient manual inspection methods. However, current PSEW methods cannot achieve universality for various complex environments because they are sensitive to the spatiotemporal stability of the signal obtained by its distributed sensors at various locations and times. Our research aimed to improve the accuracy of long-distance oil–gas PSEW systems through machine learning. In this paper, we propose a novel real-time action recognition method for long-distance PSEW systems based on a coherent Rayleigh scattering distributed optical fiber sensor. More specifically, we put forward two complementary feature calculation methods to describe signals and build a new action recognition deep learning network based on those features. Encouraging empirical results on the data collected at a real location confirm that the features can effectively describe signals in an environment with strong noise and weak signals, and the entire approach can identify and locate third-party damage events quickly under various hardware conditions with accuracies of 99.26% (500 Hz) and 97.20% (100 Hz). More generically, our method can be applied to other fields as well.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
3秒前
JamesPei应助杨震采纳,获得10
3秒前
3秒前
xuan发布了新的文献求助10
4秒前
Yuki酱发布了新的文献求助10
4秒前
旺仔发布了新的文献求助10
6秒前
7秒前
7秒前
hj发布了新的文献求助10
8秒前
呜哈哈发布了新的文献求助60
9秒前
10秒前
11秒前
Galaxy完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
溜铭钛完成签到 ,获得积分10
15秒前
17秒前
18秒前
18秒前
浮游应助外向的宛白采纳,获得10
19秒前
任团完成签到,获得积分10
21秒前
xuan完成签到,获得积分10
21秒前
hj发布了新的文献求助10
22秒前
涔雨发布了新的文献求助10
23秒前
纸速度发布了新的文献求助10
24秒前
WB87应助科研通管家采纳,获得10
24秒前
柏林寒冬应助科研通管家采纳,获得10
24秒前
Jasper应助科研通管家采纳,获得20
24秒前
老阎应助科研通管家采纳,获得30
24秒前
24秒前
Zx_1993应助科研通管家采纳,获得10
24秒前
Orange应助科研通管家采纳,获得10
24秒前
Lucas应助科研通管家采纳,获得10
24秒前
Hello应助科研通管家采纳,获得10
24秒前
李健应助科研通管家采纳,获得10
24秒前
小蘑菇应助科研通管家采纳,获得10
24秒前
WB87应助科研通管家采纳,获得10
24秒前
科目三应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425307
求助须知:如何正确求助?哪些是违规求助? 4539385
关于积分的说明 14167531
捐赠科研通 4456762
什么是DOI,文献DOI怎么找? 2444320
邀请新用户注册赠送积分活动 1435292
关于科研通互助平台的介绍 1412721