Deep Learning Based Object Detection and Recognition of Unmanned Aerial Vehicles

人工智能 计算机科学 深度学习 卷积神经网络 目标检测 过程(计算) 模式识别(心理学) 特征提取 视觉对象识别的认知神经科学 机器学习 对象(语法) 计算机视觉 操作系统
作者
Erdem Bayhan,Zehra Ozkan,Mustafa Namdar,Arif Başgümüş
出处
期刊:2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) 被引量:17
标识
DOI:10.1109/hora52670.2021.9461279
摘要

In this study, the methods of deep learning-based detection and recognition of the threats, evaluated in terms of military and defense industry, by unmanned aerial vehicles (UAV) are presented. In the proposed approach, firstly, the training for machine learning on the objects is carried out using convolutional neural networks, which is one of the deep learning algorithms. By choosing the Faster-RCNN and YoloV4 architectures of the deep learning method, it is aimed to compare the achievements of the accuracy in the training process. In order to be used in the training and testing stages of the recommended methods, data sets containing images selected from different weather, land conditions and different time periods of the day are determined. The model for the detection and recognition of the threatening elements is trained, using 2595 images. The method of detecting and recognizing the objects is tested with military operation images and records taken by the UAVs. While an accuracy rate of 93% has been achieved in the Faster-RCNN architecture in object detection and recognition, this rate has been observed as 88% in the YoloV4 architecture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Stone发布了新的文献求助10
刚刚
科研通AI6应助tianxiangning采纳,获得10
刚刚
刚刚
Tzihin发布了新的文献求助30
刚刚
科研通AI6应助俞孤风采纳,获得30
1秒前
jajaqy完成签到,获得积分10
1秒前
嘿嘿发布了新的文献求助10
1秒前
yao啦啦发布了新的文献求助10
1秒前
1秒前
2秒前
luchang123qq发布了新的文献求助10
2秒前
秋老众少年完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
丘比特应助oohQoo采纳,获得10
3秒前
难过盼海发布了新的文献求助10
3秒前
4秒前
Jasper应助JD采纳,获得10
4秒前
hanry完成签到 ,获得积分10
5秒前
木南完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
研友_Zlx3aZ发布了新的文献求助10
6秒前
7秒前
调皮秋凌完成签到,获得积分20
7秒前
7秒前
荣容完成签到 ,获得积分10
7秒前
8秒前
8秒前
Stone完成签到,获得积分10
8秒前
不吃橘子发布了新的文献求助30
8秒前
陈秋禹发布了新的文献求助10
9秒前
科研通AI6应助bnvgx采纳,获得10
9秒前
浮游应助派大星采纳,获得10
9秒前
9秒前
今后应助luchang123qq采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526219
求助须知:如何正确求助?哪些是违规求助? 4616313
关于积分的说明 14553183
捐赠科研通 4554594
什么是DOI,文献DOI怎么找? 2495952
邀请新用户注册赠送积分活动 1476311
关于科研通互助平台的介绍 1447978