亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning Based Object Detection and Recognition of Unmanned Aerial Vehicles

人工智能 计算机科学 深度学习 卷积神经网络 目标检测 过程(计算) 模式识别(心理学) 特征提取 视觉对象识别的认知神经科学 机器学习 对象(语法) 计算机视觉 操作系统
作者
Erdem Bayhan,Zehra Ozkan,Mustafa Namdar,Arif Başgümüş
出处
期刊:2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) 被引量:17
标识
DOI:10.1109/hora52670.2021.9461279
摘要

In this study, the methods of deep learning-based detection and recognition of the threats, evaluated in terms of military and defense industry, by unmanned aerial vehicles (UAV) are presented. In the proposed approach, firstly, the training for machine learning on the objects is carried out using convolutional neural networks, which is one of the deep learning algorithms. By choosing the Faster-RCNN and YoloV4 architectures of the deep learning method, it is aimed to compare the achievements of the accuracy in the training process. In order to be used in the training and testing stages of the recommended methods, data sets containing images selected from different weather, land conditions and different time periods of the day are determined. The model for the detection and recognition of the threatening elements is trained, using 2595 images. The method of detecting and recognizing the objects is tested with military operation images and records taken by the UAVs. While an accuracy rate of 93% has been achieved in the Faster-RCNN architecture in object detection and recognition, this rate has been observed as 88% in the YoloV4 architecture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jasper应助石榴汁的书采纳,获得10
3秒前
步行者发布了新的文献求助10
22秒前
23秒前
隐形曼青应助111采纳,获得10
23秒前
23秒前
newmoon完成签到 ,获得积分10
25秒前
柳柳发布了新的文献求助10
32秒前
36秒前
张涛完成签到 ,获得积分10
37秒前
111完成签到,获得积分20
38秒前
39秒前
44秒前
47秒前
聪慧语风发布了新的文献求助10
50秒前
50秒前
Orange应助柳柳采纳,获得10
50秒前
科研通AI6应助科研通管家采纳,获得10
52秒前
科研通AI6应助科研通管家采纳,获得10
52秒前
赘婿应助科研通管家采纳,获得10
52秒前
111发布了新的文献求助10
53秒前
56秒前
聪慧语风完成签到,获得积分10
1分钟前
牛油果战士完成签到,获得积分10
1分钟前
善学以致用应助Harrison采纳,获得10
1分钟前
陶醉的烤鸡完成签到 ,获得积分10
1分钟前
桐桐应助sh采纳,获得10
1分钟前
1分钟前
lmk完成签到 ,获得积分10
1分钟前
sh发布了新的文献求助10
1分钟前
1分钟前
华仔应助大树采纳,获得10
1分钟前
养乐多敬你完成签到 ,获得积分10
1分钟前
1分钟前
orixero应助伊力扎提采纳,获得20
1分钟前
1分钟前
李健应助大森林采纳,获得10
1分钟前
zzz发布了新的文献求助100
1分钟前
兜兜完成签到,获得积分10
1分钟前
爆米花应助勤劳的盼芙采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754802
求助须知:如何正确求助?哪些是违规求助? 5489736
关于积分的说明 15380642
捐赠科研通 4893273
什么是DOI,文献DOI怎么找? 2631842
邀请新用户注册赠送积分活动 1579771
关于科研通互助平台的介绍 1535564