Deep Learning Based Object Detection and Recognition of Unmanned Aerial Vehicles

人工智能 计算机科学 深度学习 卷积神经网络 目标检测 过程(计算) 模式识别(心理学) 特征提取 视觉对象识别的认知神经科学 机器学习 对象(语法) 计算机视觉 操作系统
作者
Erdem Bayhan,Zehra Ozkan,Mustafa Namdar,Arif Başgümüş
出处
期刊:2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) 被引量:17
标识
DOI:10.1109/hora52670.2021.9461279
摘要

In this study, the methods of deep learning-based detection and recognition of the threats, evaluated in terms of military and defense industry, by unmanned aerial vehicles (UAV) are presented. In the proposed approach, firstly, the training for machine learning on the objects is carried out using convolutional neural networks, which is one of the deep learning algorithms. By choosing the Faster-RCNN and YoloV4 architectures of the deep learning method, it is aimed to compare the achievements of the accuracy in the training process. In order to be used in the training and testing stages of the recommended methods, data sets containing images selected from different weather, land conditions and different time periods of the day are determined. The model for the detection and recognition of the threatening elements is trained, using 2595 images. The method of detecting and recognizing the objects is tested with military operation images and records taken by the UAVs. While an accuracy rate of 93% has been achieved in the Faster-RCNN architecture in object detection and recognition, this rate has been observed as 88% in the YoloV4 architecture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
liars发布了新的文献求助10
刚刚
刚刚
一击必中发布了新的文献求助10
1秒前
斯文败类应助MelinaY采纳,获得10
1秒前
1秒前
卡卡西应助宁羽采纳,获得20
2秒前
小白完成签到,获得积分10
2秒前
明理芷云发布了新的文献求助10
2秒前
xunxunmimi发布了新的文献求助10
3秒前
略略完成签到,获得积分10
3秒前
勿明应助zdq10068采纳,获得100
4秒前
4秒前
ZhengSyHoe发布了新的文献求助10
4秒前
4秒前
科研狗发布了新的文献求助10
4秒前
5秒前
魔幻诗兰完成签到,获得积分10
5秒前
6秒前
yookia应助ont-tnt采纳,获得10
7秒前
晚心发布了新的文献求助10
7秒前
8秒前
8秒前
Q_Q发布了新的文献求助10
9秒前
9秒前
cureall应助--采纳,获得10
9秒前
口香糖探长完成签到 ,获得积分10
9秒前
东方雨季完成签到,获得积分10
9秒前
甘博发布了新的文献求助10
10秒前
Hello应助ww采纳,获得10
11秒前
Desperado发布了新的文献求助10
11秒前
常出完成签到,获得积分20
11秒前
追梦少年发布了新的文献求助10
11秒前
KhalilHao完成签到,获得积分10
11秒前
英俊的铭应助明理芷云采纳,获得10
11秒前
海关监管环境完成签到,获得积分10
12秒前
13秒前
13秒前
三千院羽飞完成签到,获得积分10
13秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954916
求助须知:如何正确求助?哪些是违规求助? 3501031
关于积分的说明 11101644
捐赠科研通 3231451
什么是DOI,文献DOI怎么找? 1786425
邀请新用户注册赠送积分活动 870050
科研通“疑难数据库(出版商)”最低求助积分说明 801785