Deep Learning Based Object Detection and Recognition of Unmanned Aerial Vehicles

人工智能 计算机科学 深度学习 卷积神经网络 目标检测 过程(计算) 模式识别(心理学) 特征提取 视觉对象识别的认知神经科学 机器学习 对象(语法) 计算机视觉 操作系统
作者
Erdem Bayhan,Zehra Ozkan,Mustafa Namdar,Arif Başgümüş
出处
期刊:2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) 被引量:17
标识
DOI:10.1109/hora52670.2021.9461279
摘要

In this study, the methods of deep learning-based detection and recognition of the threats, evaluated in terms of military and defense industry, by unmanned aerial vehicles (UAV) are presented. In the proposed approach, firstly, the training for machine learning on the objects is carried out using convolutional neural networks, which is one of the deep learning algorithms. By choosing the Faster-RCNN and YoloV4 architectures of the deep learning method, it is aimed to compare the achievements of the accuracy in the training process. In order to be used in the training and testing stages of the recommended methods, data sets containing images selected from different weather, land conditions and different time periods of the day are determined. The model for the detection and recognition of the threatening elements is trained, using 2595 images. The method of detecting and recognizing the objects is tested with military operation images and records taken by the UAVs. While an accuracy rate of 93% has been achieved in the Faster-RCNN architecture in object detection and recognition, this rate has been observed as 88% in the YoloV4 architecture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
yetis完成签到 ,获得积分10
刚刚
上山的吗喽完成签到,获得积分10
刚刚
星辰大海应助Msure采纳,获得10
1秒前
英俊的铭应助Msure采纳,获得10
1秒前
1秒前
tcjia完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
YE发布了新的文献求助10
3秒前
3秒前
5秒前
科研通AI6应助dailj采纳,获得10
5秒前
5秒前
LXJY发布了新的文献求助10
6秒前
优美紫槐应助cgr采纳,获得10
6秒前
舒心梦菲发布了新的文献求助10
6秒前
BaodaGUODNG发布了新的文献求助30
7秒前
煎饼煎饼完成签到,获得积分10
7秒前
任性的莫言完成签到,获得积分20
7秒前
7秒前
嘻嘻嘻发布了新的文献求助10
8秒前
纪言七许发布了新的文献求助10
8秒前
9秒前
9秒前
英姑应助万有引力139采纳,获得10
9秒前
桃洛璟发布了新的文献求助10
9秒前
嘿嘿嘿完成签到,获得积分10
9秒前
Sunny发布了新的文献求助10
10秒前
10秒前
852应助圆脸的空间啊采纳,获得10
11秒前
AteeqBaloch完成签到,获得积分10
12秒前
酷波er应助机智皮卡丘采纳,获得10
12秒前
顺利的歌曲完成签到,获得积分10
12秒前
云端步伐完成签到,获得积分10
13秒前
13秒前
13秒前
豆豆突发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641841
求助须知:如何正确求助?哪些是违规求助? 4757370
关于积分的说明 15014933
捐赠科研通 4800251
什么是DOI,文献DOI怎么找? 2565964
邀请新用户注册赠送积分活动 1524113
关于科研通互助平台的介绍 1483776