Deep Learning Based Object Detection and Recognition of Unmanned Aerial Vehicles

人工智能 计算机科学 深度学习 卷积神经网络 目标检测 过程(计算) 模式识别(心理学) 特征提取 视觉对象识别的认知神经科学 机器学习 对象(语法) 计算机视觉 操作系统
作者
Erdem Bayhan,Zehra Ozkan,Mustafa Namdar,Arif Başgümüş
出处
期刊:2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) 被引量:17
标识
DOI:10.1109/hora52670.2021.9461279
摘要

In this study, the methods of deep learning-based detection and recognition of the threats, evaluated in terms of military and defense industry, by unmanned aerial vehicles (UAV) are presented. In the proposed approach, firstly, the training for machine learning on the objects is carried out using convolutional neural networks, which is one of the deep learning algorithms. By choosing the Faster-RCNN and YoloV4 architectures of the deep learning method, it is aimed to compare the achievements of the accuracy in the training process. In order to be used in the training and testing stages of the recommended methods, data sets containing images selected from different weather, land conditions and different time periods of the day are determined. The model for the detection and recognition of the threatening elements is trained, using 2595 images. The method of detecting and recognizing the objects is tested with military operation images and records taken by the UAVs. While an accuracy rate of 93% has been achieved in the Faster-RCNN architecture in object detection and recognition, this rate has been observed as 88% in the YoloV4 architecture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chaojiajin发布了新的文献求助10
1秒前
腼腆的老虎完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
lkk发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
6秒前
JamesPei应助都非农都是靠采纳,获得10
7秒前
7秒前
泡泡甜筒发布了新的文献求助30
7秒前
8秒前
9秒前
9秒前
xrt完成签到,获得积分10
9秒前
情何yi堪发布了新的文献求助10
11秒前
11秒前
复杂瑛发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
13秒前
可爱的函函应助sxp1031采纳,获得10
14秒前
wangxiaoyao发布了新的文献求助10
15秒前
15秒前
15秒前
Mr Yang发布了新的文献求助10
15秒前
ys1111xiao发布了新的文献求助10
16秒前
瀚泛完成签到,获得积分10
16秒前
科研通AI6应助哈哈哈哈采纳,获得10
16秒前
小路发布了新的文献求助10
17秒前
17秒前
桐桐应助任旭东采纳,获得10
17秒前
17秒前
Emper发布了新的文献求助10
17秒前
18秒前
务实土豆完成签到 ,获得积分10
18秒前
开朗的钻石完成签到,获得积分10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4922020
求助须知:如何正确求助?哪些是违规求助? 4192878
关于积分的说明 13023740
捐赠科研通 3964591
什么是DOI,文献DOI怎么找? 2173028
邀请新用户注册赠送积分活动 1190637
关于科研通互助平台的介绍 1099972