Deep Learning Based Object Detection and Recognition of Unmanned Aerial Vehicles

人工智能 计算机科学 深度学习 卷积神经网络 目标检测 过程(计算) 模式识别(心理学) 特征提取 视觉对象识别的认知神经科学 机器学习 对象(语法) 计算机视觉 操作系统
作者
Erdem Bayhan,Zehra Ozkan,Mustafa Namdar,Arif Başgümüş
出处
期刊:2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) 被引量:17
标识
DOI:10.1109/hora52670.2021.9461279
摘要

In this study, the methods of deep learning-based detection and recognition of the threats, evaluated in terms of military and defense industry, by unmanned aerial vehicles (UAV) are presented. In the proposed approach, firstly, the training for machine learning on the objects is carried out using convolutional neural networks, which is one of the deep learning algorithms. By choosing the Faster-RCNN and YoloV4 architectures of the deep learning method, it is aimed to compare the achievements of the accuracy in the training process. In order to be used in the training and testing stages of the recommended methods, data sets containing images selected from different weather, land conditions and different time periods of the day are determined. The model for the detection and recognition of the threatening elements is trained, using 2595 images. The method of detecting and recognizing the objects is tested with military operation images and records taken by the UAVs. While an accuracy rate of 93% has been achieved in the Faster-RCNN architecture in object detection and recognition, this rate has been observed as 88% in the YoloV4 architecture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术纣王发布了新的文献求助10
刚刚
try完成签到,获得积分10
1秒前
小羊许个愿完成签到,获得积分10
1秒前
一灯大师发布了新的文献求助10
1秒前
施戎发布了新的文献求助10
1秒前
晨曦中奔跑完成签到,获得积分10
1秒前
华仔完成签到,获得积分10
2秒前
2秒前
明明发布了新的文献求助10
2秒前
dian发布了新的文献求助10
2秒前
李树玉发布了新的文献求助10
2秒前
是帆帆呀发布了新的文献求助10
3秒前
3秒前
K2L完成签到,获得积分10
3秒前
JZ2021完成签到,获得积分10
4秒前
情怀应助愉快的莹采纳,获得10
4秒前
无花果应助机灵的安青采纳,获得10
5秒前
5秒前
tianfx3完成签到,获得积分10
5秒前
彭于晏应助谦让念波采纳,获得10
5秒前
6秒前
chen完成签到,获得积分10
6秒前
wang可爱额完成签到 ,获得积分10
7秒前
wjclear发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
落寞幻翠发布了新的文献求助10
7秒前
zhanglj完成签到,获得积分10
8秒前
侃侃发布了新的文献求助10
8秒前
Ar完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
10秒前
头哥应助11采纳,获得10
11秒前
rabbit完成签到,获得积分10
11秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
传奇3应助李树玉采纳,获得10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791