Deep Learning Based Object Detection and Recognition of Unmanned Aerial Vehicles

人工智能 计算机科学 深度学习 卷积神经网络 目标检测 过程(计算) 模式识别(心理学) 特征提取 视觉对象识别的认知神经科学 机器学习 对象(语法) 计算机视觉 操作系统
作者
Erdem Bayhan,Zehra Ozkan,Mustafa Namdar,Arif Başgümüş
出处
期刊:2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) 被引量:17
标识
DOI:10.1109/hora52670.2021.9461279
摘要

In this study, the methods of deep learning-based detection and recognition of the threats, evaluated in terms of military and defense industry, by unmanned aerial vehicles (UAV) are presented. In the proposed approach, firstly, the training for machine learning on the objects is carried out using convolutional neural networks, which is one of the deep learning algorithms. By choosing the Faster-RCNN and YoloV4 architectures of the deep learning method, it is aimed to compare the achievements of the accuracy in the training process. In order to be used in the training and testing stages of the recommended methods, data sets containing images selected from different weather, land conditions and different time periods of the day are determined. The model for the detection and recognition of the threatening elements is trained, using 2595 images. The method of detecting and recognizing the objects is tested with military operation images and records taken by the UAVs. While an accuracy rate of 93% has been achieved in the Faster-RCNN architecture in object detection and recognition, this rate has been observed as 88% in the YoloV4 architecture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张一完成签到,获得积分10
3秒前
windmill完成签到,获得积分10
3秒前
赘婿应助David采纳,获得10
4秒前
CipherSage应助是我呀吼采纳,获得10
4秒前
倪好完成签到,获得积分10
7秒前
谦让汝燕完成签到,获得积分10
7秒前
9秒前
1234@完成签到 ,获得积分10
10秒前
雨相所至完成签到,获得积分10
10秒前
研友_8oYg4n完成签到,获得积分10
10秒前
和光同尘发布了新的文献求助20
10秒前
迷路凌柏完成签到 ,获得积分10
10秒前
11秒前
冬亦发布了新的文献求助10
12秒前
清脆迎曼应助小喜采纳,获得10
12秒前
机智毛豆完成签到,获得积分10
13秒前
13秒前
jzmulyl完成签到,获得积分10
13秒前
薛乎虚完成签到 ,获得积分10
13秒前
gaogao完成签到,获得积分10
14秒前
糖炒栗子完成签到,获得积分10
15秒前
汉堡包应助马前人采纳,获得10
15秒前
m李完成签到 ,获得积分10
15秒前
吴旭东发布了新的文献求助10
16秒前
16秒前
deluohaida完成签到,获得积分20
18秒前
科研小白完成签到,获得积分10
18秒前
18秒前
kyt完成签到 ,获得积分10
19秒前
cij123完成签到,获得积分10
19秒前
冬亦完成签到,获得积分10
20秒前
石人达完成签到,获得积分10
20秒前
小羊佳佳发布了新的文献求助10
21秒前
David发布了新的文献求助10
21秒前
jzmupyj完成签到,获得积分10
21秒前
赵怼怼完成签到,获得积分10
21秒前
22秒前
Weathing完成签到 ,获得积分10
24秒前
七QI完成签到 ,获得积分10
24秒前
吴旭东完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4570728
求助须知:如何正确求助?哪些是违规求助? 3992198
关于积分的说明 12356899
捐赠科研通 3664905
什么是DOI,文献DOI怎么找? 2019801
邀请新用户注册赠送积分活动 1054208
科研通“疑难数据库(出版商)”最低求助积分说明 941798