Deep Learning Based Object Detection and Recognition of Unmanned Aerial Vehicles

人工智能 计算机科学 深度学习 卷积神经网络 目标检测 过程(计算) 模式识别(心理学) 特征提取 视觉对象识别的认知神经科学 机器学习 对象(语法) 计算机视觉 操作系统
作者
Erdem Bayhan,Zehra Ozkan,Mustafa Namdar,Arif Başgümüş
出处
期刊:2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) 被引量:17
标识
DOI:10.1109/hora52670.2021.9461279
摘要

In this study, the methods of deep learning-based detection and recognition of the threats, evaluated in terms of military and defense industry, by unmanned aerial vehicles (UAV) are presented. In the proposed approach, firstly, the training for machine learning on the objects is carried out using convolutional neural networks, which is one of the deep learning algorithms. By choosing the Faster-RCNN and YoloV4 architectures of the deep learning method, it is aimed to compare the achievements of the accuracy in the training process. In order to be used in the training and testing stages of the recommended methods, data sets containing images selected from different weather, land conditions and different time periods of the day are determined. The model for the detection and recognition of the threatening elements is trained, using 2595 images. The method of detecting and recognizing the objects is tested with military operation images and records taken by the UAVs. While an accuracy rate of 93% has been achieved in the Faster-RCNN architecture in object detection and recognition, this rate has been observed as 88% in the YoloV4 architecture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
酒吧舞男茜茜妈完成签到,获得积分10
2秒前
李爱国应助锅锅采纳,获得10
2秒前
2秒前
科研通AI2S应助神奇的种子采纳,获得10
3秒前
3秒前
4秒前
0031发布了新的文献求助10
4秒前
wzaaaaa完成签到,获得积分10
5秒前
orchid发布了新的文献求助10
6秒前
llll发布了新的文献求助10
7秒前
7秒前
李正安完成签到,获得积分10
9秒前
啵啵小甜狗完成签到,获得积分10
10秒前
qiu完成签到,获得积分20
10秒前
10秒前
0031完成签到 ,获得积分10
13秒前
13秒前
再睡十分钟完成签到 ,获得积分10
14秒前
moon发布了新的文献求助10
14秒前
16秒前
17秒前
无限的盼晴完成签到,获得积分20
17秒前
18秒前
zys完成签到 ,获得积分10
18秒前
renshiq完成签到,获得积分10
18秒前
18秒前
科目三应助orchid采纳,获得10
21秒前
21秒前
陶醉之玉完成签到,获得积分10
22秒前
Maddy完成签到,获得积分10
22秒前
22秒前
23秒前
23秒前
bobobo发布了新的文献求助10
23秒前
Enkcy发布了新的文献求助10
23秒前
CGEA完成签到,获得积分10
23秒前
wuyuan完成签到,获得积分10
24秒前
酷波er应助臻灏采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5685045
求助须知:如何正确求助?哪些是违规求助? 5040038
关于积分的说明 15185849
捐赠科研通 4844104
什么是DOI,文献DOI怎么找? 2597110
邀请新用户注册赠送积分活动 1549690
关于科研通互助平台的介绍 1508176