Deep Learning Based Object Detection and Recognition of Unmanned Aerial Vehicles

人工智能 计算机科学 深度学习 卷积神经网络 目标检测 过程(计算) 模式识别(心理学) 特征提取 视觉对象识别的认知神经科学 机器学习 对象(语法) 计算机视觉 操作系统
作者
Erdem Bayhan,Zehra Ozkan,Mustafa Namdar,Arif Başgümüş
出处
期刊:2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) 被引量:17
标识
DOI:10.1109/hora52670.2021.9461279
摘要

In this study, the methods of deep learning-based detection and recognition of the threats, evaluated in terms of military and defense industry, by unmanned aerial vehicles (UAV) are presented. In the proposed approach, firstly, the training for machine learning on the objects is carried out using convolutional neural networks, which is one of the deep learning algorithms. By choosing the Faster-RCNN and YoloV4 architectures of the deep learning method, it is aimed to compare the achievements of the accuracy in the training process. In order to be used in the training and testing stages of the recommended methods, data sets containing images selected from different weather, land conditions and different time periods of the day are determined. The model for the detection and recognition of the threatening elements is trained, using 2595 images. The method of detecting and recognizing the objects is tested with military operation images and records taken by the UAVs. While an accuracy rate of 93% has been achieved in the Faster-RCNN architecture in object detection and recognition, this rate has been observed as 88% in the YoloV4 architecture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幺鸡豆子完成签到,获得积分20
刚刚
能干外套发布了新的文献求助10
刚刚
mengtingmei应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
zz应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
zxy应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
asdfzxcv应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
spc68应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
zz应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
zz应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得30
2秒前
spc68应助科研通管家采纳,获得10
2秒前
yifan21完成签到,获得积分0
2秒前
烟花应助科研通管家采纳,获得30
2秒前
2秒前
无极微光应助科研通管家采纳,获得20
2秒前
所所应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
葫芦娃发布了新的文献求助20
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
逸之狐应助科研通管家采纳,获得10
3秒前
伶俐的铁身完成签到,获得积分10
3秒前
轨迹应助科研通管家采纳,获得20
3秒前
Mira_Liu应助科研通管家采纳,获得10
3秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661387
求助须知:如何正确求助?哪些是违规求助? 4838678
关于积分的说明 15095847
捐赠科研通 4820153
什么是DOI,文献DOI怎么找? 2579773
邀请新用户注册赠送积分活动 1534034
关于科研通互助平台的介绍 1492769