亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Individual Detection and Tracking of Group Housed Pigs in Their Home Pen Using Computer Vision

跟踪(教育) 交叉口(航空) 弹性(材料科学) 人工智能 计算机科学 分类 计算机视觉 考试(生物学) 心理弹性 模式识别(心理学) 心理学 地图学 地理 生物 情报检索 社会心理学 教育学 物理 热力学 古生物学
作者
Lisette E. van der Zande,Oleksiy Guzhva,T.B. Rodenburg
出处
期刊:Frontiers in animal science [Frontiers Media SA]
卷期号:2 被引量:19
标识
DOI:10.3389/fanim.2021.669312
摘要

Modern welfare definitions not only require that the Five Freedoms are met, but animals should also be able to adapt to changes (i. e., resilience) and reach a state that the animals experience as positive. Measuring resilience is challenging since relatively subtle changes in animal behavior need to be observed 24/7. Changes in individual activity showed potential in previous studies to reflect resilience. A computer vision (CV) based tracking algorithm for pigs could potentially measure individual activity, which will be more objective and less time consuming than human observations. The aim of this study was to investigate the potential of state-of-the-art CV algorithms for pig detection and tracking for individual activity monitoring in pigs. This study used a tracking-by-detection method, where pigs were first detected using You Only Look Once v3 (YOLOv3) and in the next step detections were connected using the Simple Online Real-time Tracking (SORT) algorithm. Two videos, of 7 h each, recorded in barren and enriched environments were used to test the tracking. Three detection models were proposed using different annotation datasets: a young model where annotated pigs were younger than in the test video, an older model where annotated pigs were older than the test video, and a combined model where annotations from younger and older pigs were combined. The combined detection model performed best with a mean average precision (mAP) of over 99.9% in the enriched environment and 99.7% in the barren environment. Intersection over Union (IOU) exceeded 85% in both environments, indicating a good accuracy of the detection algorithm. The tracking algorithm performed better in the enriched environment compared to the barren environment. When false positive tracks where removed (i.e., tracks not associated with a pig), individual pigs were tracked on average for 22.3 min in the barren environment and 57.8 min in the enriched environment. Thus, based on proposed tracking-by-detection algorithm, pigs can be tracked automatically in different environments, but manual corrections may be needed to keep track of the individual throughout the video and estimate activity. The individual activity measured with proposed algorithm could be used as an estimate to measure resilience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyhgyg发布了新的文献求助10
4秒前
yyhgyg完成签到,获得积分10
17秒前
35秒前
38秒前
49秒前
52秒前
whh123完成签到 ,获得积分10
1分钟前
小二郎应助啦啦咔嘞采纳,获得10
1分钟前
1分钟前
1分钟前
欣喜的人龙完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI2S应助友好的台灯采纳,获得10
1分钟前
Lorin完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
竹筏过海应助hijr采纳,获得30
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
大鱼完成签到,获得积分20
3分钟前
3分钟前
3分钟前
cxy发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
无名老大应助cxy采纳,获得10
4分钟前
乐乐应助爱听歌笑寒采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3393035
求助须知:如何正确求助?哪些是违规求助? 3003402
关于积分的说明 8809159
捐赠科研通 2690204
什么是DOI,文献DOI怎么找? 1473514
科研通“疑难数据库(出版商)”最低求助积分说明 681603
邀请新用户注册赠送积分活动 674550