3D Reconstruction of Unstructured Objects Using Information From Multiple Sensors

点云 由运动产生的结构 计算机科学 人工智能 计算机视觉 曲面重建 三维重建 分割 迭代重建 噪音(视频) 特征(语言学) 算法 重建算法 比例因子(宇宙学) 点(几何) 运动估计 曲面(拓扑) 数学 图像(数学) 几何学 量子力学 语言学 物理 哲学 宇宙学 空间的度量展开 暗能量
作者
Hui Chen,Fangyong Xu,Wanquan Liu,Dongge Sun,Peter Liu,Muhammad Ilyas Menhas,Bilal Ahmad
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (23): 26951-26963 被引量:8
标识
DOI:10.1109/jsen.2021.3121343
摘要

The Structure-from-Motion (SfM) algorithm is widely used for point cloud reconstruction. However, one drawback of conventional SfM based methods is that the obtained final point sets may contain holes and noise, which could degrade the estimation of reconstructed objects especially for smooth surfaces with few features. The other drawback is the accuracy and speed of SfM based methods depend on the uncertain number of images. To overcome these limitations, this paper proposes a novel 3D reconstruction method for unstructured objects based on the structure from motion in combination with the structured light, in which the point sets of structured light and the point sets of structure from motion can come from different target objects. Since the two point sets coming from multiple sensors do not scale well for register, making it difficult to find corresponding points, a scaled principal component analysis algorithm is proposed for the registration to overcome the impact due to large scale variance. With a large scale factor, a recalculated registration center is proposed via feature region segmentation to achieve point cloud registration again. The two point sets are matched using the proposed optimization method to complete 3D reconstruction. Surface reconstruction is performed using the Poisson algorithm to obtain a smooth surface. The proposed method is tested on some simple structured objects and real-life data of complex unstructured objects collected using range sensors. Compared with several state-of-the-art algorithms, experimental results confirm its potential for surface reconstruction from depth data calculated from the two sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助舒心绿柏采纳,获得10
1秒前
可乐发布了新的文献求助10
1秒前
王彬发布了新的文献求助30
3秒前
5秒前
充电宝应助zhzhzh采纳,获得10
6秒前
7秒前
随机子应助小宇宙采纳,获得10
9秒前
可可完成签到,获得积分10
10秒前
meng完成签到 ,获得积分10
11秒前
YJY驳回了orixero应助
13秒前
圆圆圆完成签到 ,获得积分10
13秒前
14秒前
14秒前
可可发布了新的文献求助10
14秒前
徐丑发布了新的文献求助20
15秒前
跺跺脚完成签到,获得积分10
16秒前
Akim应助wxyllxx采纳,获得10
16秒前
舒心绿柏发布了新的文献求助10
18秒前
Yuy完成签到,获得积分10
18秒前
xiaozhao完成签到 ,获得积分10
20秒前
爆米花应助犹豫嚣采纳,获得10
20秒前
20秒前
日央发布了新的文献求助10
21秒前
22秒前
自然完成签到,获得积分10
24秒前
24秒前
王彬完成签到,获得积分10
24秒前
YHY完成签到,获得积分10
25秒前
zhzhzh发布了新的文献求助10
25秒前
Teng完成签到 ,获得积分10
27秒前
朴素若枫完成签到,获得积分10
28秒前
28秒前
void1999完成签到,获得积分20
31秒前
Allen完成签到,获得积分10
31秒前
思源应助wxyllxx采纳,获得10
33秒前
111112发布了新的文献求助30
33秒前
强无敌完成签到,获得积分10
34秒前
俏皮的雪碧完成签到,获得积分10
34秒前
yappy123发布了新的文献求助10
36秒前
38秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168308
求助须知:如何正确求助?哪些是违规求助? 2819642
关于积分的说明 7927284
捐赠科研通 2479437
什么是DOI,文献DOI怎么找? 1320927
科研通“疑难数据库(出版商)”最低求助积分说明 632907
版权声明 602458