3D Reconstruction of Unstructured Objects Using Information From Multiple Sensors

点云 由运动产生的结构 计算机科学 人工智能 计算机视觉 曲面重建 三维重建 分割 迭代重建 噪音(视频) 特征(语言学) 算法 重建算法 比例因子(宇宙学) 点(几何) 运动估计 曲面(拓扑) 数学 图像(数学) 几何学 量子力学 语言学 物理 哲学 宇宙学 空间的度量展开 暗能量
作者
Hui Chen,Fangyong Xu,Wanquan Liu,Dongge Sun,Peter Liu,Muhammad Ilyas Menhas,Bilal Ahmad
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (23): 26951-26963 被引量:8
标识
DOI:10.1109/jsen.2021.3121343
摘要

The Structure-from-Motion (SfM) algorithm is widely used for point cloud reconstruction. However, one drawback of conventional SfM based methods is that the obtained final point sets may contain holes and noise, which could degrade the estimation of reconstructed objects especially for smooth surfaces with few features. The other drawback is the accuracy and speed of SfM based methods depend on the uncertain number of images. To overcome these limitations, this paper proposes a novel 3D reconstruction method for unstructured objects based on the structure from motion in combination with the structured light, in which the point sets of structured light and the point sets of structure from motion can come from different target objects. Since the two point sets coming from multiple sensors do not scale well for register, making it difficult to find corresponding points, a scaled principal component analysis algorithm is proposed for the registration to overcome the impact due to large scale variance. With a large scale factor, a recalculated registration center is proposed via feature region segmentation to achieve point cloud registration again. The two point sets are matched using the proposed optimization method to complete 3D reconstruction. Surface reconstruction is performed using the Poisson algorithm to obtain a smooth surface. The proposed method is tested on some simple structured objects and real-life data of complex unstructured objects collected using range sensors. Compared with several state-of-the-art algorithms, experimental results confirm its potential for surface reconstruction from depth data calculated from the two sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暴富完成签到,获得积分10
1秒前
Trueman完成签到,获得积分10
2秒前
科研通AI2S应助你好采纳,获得10
3秒前
max发布了新的文献求助30
3秒前
快乐丸子完成签到,获得积分10
3秒前
九宫格完成签到,获得积分10
4秒前
4秒前
小号完成签到,获得积分20
4秒前
5秒前
李子木发布了新的文献求助10
6秒前
6秒前
在水一方应助小写采纳,获得10
7秒前
小严发布了新的文献求助10
7秒前
7秒前
7秒前
粗心小熊猫完成签到,获得积分10
8秒前
Ava应助lhr采纳,获得10
8秒前
谢谢完成签到,获得积分20
8秒前
Owen应助九宫格采纳,获得10
9秒前
10秒前
11秒前
meimei发布了新的文献求助10
13秒前
英俊的铭应助天天向上采纳,获得10
13秒前
布鲁鲁发布了新的文献求助20
13秒前
14秒前
梅梅梅发布了新的文献求助10
14秒前
梨碗滑发布了新的文献求助10
16秒前
天天快乐应助大大小小采纳,获得10
16秒前
16秒前
谨慎不二完成签到,获得积分10
16秒前
17秒前
max完成签到,获得积分10
18秒前
18秒前
19秒前
香蕉觅云应助huayan采纳,获得10
19秒前
小马甲应助包子采纳,获得10
19秒前
Owen应助元气满满的冰美式采纳,获得10
19秒前
寒武纪完成签到,获得积分10
20秒前
CipherSage应助huco采纳,获得10
20秒前
明亮的映天完成签到,获得积分10
20秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076615
求助须知:如何正确求助?哪些是违规求助? 2729583
关于积分的说明 7509104
捐赠科研通 2377778
什么是DOI,文献DOI怎么找? 1260780
科研通“疑难数据库(出版商)”最低求助积分说明 611183
版权声明 597203