神经科学
突触可塑性
神经营养因子
长时程增强
生物
星形胶质细胞
变质塑性
海马体
受体
中枢神经系统
生物化学
作者
Jihong Liu,Meng Zhang,Qian Wang,Ding-Yu Wu,Wei Jie,Nan Hu,Jia-Zhuo Lan,Kai Zeng,Shu-Ji Li,Xiaowen Li,Jian‐Ming Yang,Tianming Gao
标识
DOI:10.1038/s41380-021-01332-6
摘要
Long-term potentiation (LTP) in the hippocampus is the most studied form of synaptic plasticity. Temporal integration of synaptic inputs is essential in synaptic plasticity and is assumed to be achieved through Ca2+ signaling in neurons and astroglia. However, whether these two cell types play different roles in LTP remain unknown. Here, we found that through the integration of synaptic inputs, astrocyte inositol triphosphate (IP3) receptor type 2 (IP3R2)-dependent Ca2+ signaling was critical for late-phase LTP (L-LTP) but not early-phase LTP (E-LTP). Moreover, this process was mediated by astrocyte-derived brain-derived neurotrophic factor (BDNF). In contrast, neuron-derived BDNF was critical for both E-LTP and L-LTP. Importantly, the dynamic differences in BDNF secretion play a role in modulating distinct forms of LTP. Moreover, astrocyte- and neuron-derived BDNF exhibited different roles in memory. These observations enriched our knowledge of LTP and memory at the cellular level and implied distinct roles of astrocytes and neurons in information integration.
科研通智能强力驱动
Strongly Powered by AbleSci AI