材料科学
纳米晶
发光
光子上转换
光电子学
钙钛矿(结构)
异质结
量子点
纳米技术
激发
化学工程
电气工程
工程类
作者
Longfei Ruan,Yong Zhang
标识
DOI:10.1021/acsami.1c14711
摘要
Lead halide perovskite quantum dots (PQDs) exhibit excellent photoelectric and optical properties, but their poor stability and low multiphoton absorption efficiency greatly limit their biological applications. Efforts have been made to combine upconversion nanoparticles (UCNPs) with PQDs to produce a composite material that is NIR-excitable, upconverting, and emission-tunable due to the unique optical properties of UCNPs, which converts tissue-penetrating near-infrared light into visible light based on an upconversion multiphoton excitation process. However, it is challenging to make such a nanocrystal heterostructure and maintain good optical properties and stability of both UCNPs and PQDs because they have different crystal structures. Here, we report the synthesis of heterostructured UCNP-PQD nanocrystals to bring hexagonal-phase NaYF4 UCNPs and cubic-phase CsPbBr1X2 PQDs in close proximity in a single nanocrystal, leading to efficient Förster resonance energy transfer (FRET) from the UCNP to the PQD under NIR excitation, as compared to their counterparts in solution. Moreover, by further improving the lattice matching between the UCNP and PQD using Gd to replace Y, heterostructured CsPbBr3-NaGdF4:Yb,Tm nanocrystals are successfully synthesized, with much enhanced luminescence and stability at high temperatures or in polar solvents or under continuous ultraviolet light excitation as compared to those of the CsPbBr3-NaYF4:Yb,Tm nanocrystals and pure PQDs.
科研通智能强力驱动
Strongly Powered by AbleSci AI