Automatic UAV-based counting of seedlings in sugar-beet field and extension to maize and strawberry

人工智能 精准农业 甜菜 作物 RGB颜色模型 农业工程 卷积神经网络 杂草 计算机科学 机器学习 农学 农业 工程类 生物 生态学
作者
Abel Barreto,Philipp Lottes,Facundo Ramón Ispizua Yamati,Stephen Baumgarten,N. A. Wolf,Cyrill Stachniss,Anne‐Katrin Mahlein,Stefan Paulus
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:191: 106493-106493 被引量:24
标识
DOI:10.1016/j.compag.2021.106493
摘要

Counting crop seedlings is a time-demanding activity involved in diverse agricultural practices like plant cultivating, experimental trials, plant breeding procedures, and weed control. Unmanned Aerial Vehicles (UAVs) carrying RGB cameras are novel tools for automatic field mapping, and the analysis of UAV images by deep learning methods can provide relevant agronomic information. UAV-based camera systems and a deep learning image analysis pipeline are implemented for a fully automated plant counting in sugar beet, maize, and strawberry fields in the present study. Five locations were monitored at different growth stages, and the crop number per plot was automatically predicted by using a fully convolutional network (FCN) pipeline. Our FCN-based approach is a single model for jointly determining both the exact stem location of crop and weed plants and a pixel-wise plant classification considering crop, weed, and soil. To determinate the approach performance, predicted crop counting was compared to visually assessed ground truth data. Results show that UAV-based counting of sugar-beet plants delivers forecast errors lower than 4.6%, and the main factors for performance are related to the intra-row distance and the growth stage. The pipeline’s extension to other crops is possible; the errors of the predictions are lower than 4% under practical field conditions for maize and strawberry fields. This work highlight the feasibility of automatic crop counting, which can reduce manual effort to the farmers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妮妮完成签到,获得积分10
刚刚
1秒前
KSung发布了新的文献求助10
1秒前
铁拳爱丽丝完成签到,获得积分10
1秒前
所所应助宏hong采纳,获得10
2秒前
万能图书馆应助等后来呢采纳,获得10
2秒前
LZH完成签到 ,获得积分10
3秒前
21完成签到 ,获得积分10
3秒前
ramsey33完成签到,获得积分10
3秒前
3秒前
BK2008发布了新的文献求助10
3秒前
充电宝应助研友_LaV1xn采纳,获得10
4秒前
..完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
赘婿应助泽mao采纳,获得10
6秒前
6秒前
十七发布了新的文献求助10
6秒前
宓天问发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
8秒前
miss1995发布了新的文献求助20
9秒前
zzzzz发布了新的文献求助30
10秒前
zq发布了新的文献求助10
11秒前
11秒前
11秒前
llllllll应助迅速友容采纳,获得10
12秒前
12秒前
橙zy发布了新的文献求助10
12秒前
陈龙发布了新的文献求助30
13秒前
Zhang完成签到,获得积分10
14秒前
scl完成签到 ,获得积分10
14秒前
14秒前
14秒前
光年之外发布了新的文献求助10
15秒前
15秒前
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152731
求助须知:如何正确求助?哪些是违规求助? 2803968
关于积分的说明 7856424
捐赠科研通 2461663
什么是DOI,文献DOI怎么找? 1310474
科研通“疑难数据库(出版商)”最低求助积分说明 629233
版权声明 601782