摘要
A fast, effective, and sensitive dispersive solid-phase microextraction method coupled with ion mobility spectrometry for the simultaneous determination of bendiocarb, butachlor, and diazinon was developed using zinc sulfide/sulfur/sulfur-doped reduced graphene oxide (ZnS/S/S-RGO) nanocomposites. ZnS/S/S-RGO three-component nanocomposites were synthesized through a single-step solvothermal procedure, and their properties were characterized by FT-IR, XRD, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), and energy-dispersive x-ray spectroscopy (EDX). The influence of different parameters was optimized on the efficiency of the extraction including the type and the volume of desorption solvent, pH, type and the volume of buffer, the amount of absorbent, sorption and desorption times. Under the optimal conditions, linear ranges were achieved 0.8-110, 1.0-110, and 0.5-100 ng mL-1 with detection limits of 0.32±0.01, 0.40±0.02, and 0.27±0.02 ng mL-1 for bendiocarb, butachlor, and diazinon, respectively. The method was employed for the ultra-trace determination of the three pesticides in water, rice, and soil samples with acceptable recovery values within the range 96.6±4.8-104.4±6.4%.