淀粉
化学
酰化
小角X射线散射
傅里叶变换红外光谱
消化(炼金术)
食品化学
水解
发酵
分子
食品科学
有机化学
化学工程
色谱法
散射
工程类
物理
光学
催化作用
超分子化学
绿色化学
作者
Mei Li,Jing Wang,Fenfen Wang,Ming Wu,Rui Wang,Pádraig Strappe,Christopher Blanchard,Zhongkai Zhou
标识
DOI:10.1016/j.foodhyd.2021.107347
摘要
The effect of acylation with various short-chain fatty acids on starch fine structure, digestion and gut microbiota fermentation property was investigated. Nuclear magnetic resonance spectra of acylated starch convinced the existence of acyl protons. Consistently, Fourier transform infrared spectra showed a carbonyl CO vibration at 1730 cm−1 due to the introduced acyl groups. X-ray diffraction (XRD) and small angle X-ray scattering (SAXS) studies revealed that the acylation destroyed the internal structure for providing a chance of rearrangement of starch molecules with the formation of a different fractal structures. More interestingly, compared with native starch, there were a higher Δρu and a lower Δρ for acylated starches, suggesting more ordered aggregation structures was formed inside the starch granules. Kinetics of in-vitro hydrolytic enzymatic model and Pearson correlation coefficients further confirmed the association between multi-scale structural order and digestion characters. Acyl groups introduced by acetylation, propionylation and butyrylation onto the starch molecules could be effectively released by the intestinal flora during the fermentation, specifically increasing their corresponding SCFAs production, respectively. The greater generation of the specific SCFA from the acylated starches following the microbiota fermentation may highlight their importance in the application in food and pharmaceutical industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI