TNFR2 As a Target to Improve CD19-Directed CART Cell Fitness and Antitumor Activity in Large B Cell Lymphoma

推车 CD19 癌症研究 离体 嵌合抗原受体 体内 细胞 T细胞 程序性细胞死亡 细胞凋亡 医学 生物 免疫学 流式细胞术 免疫系统 生物技术 工程类 机械工程 生物化学 遗传学
作者
Claudia Manriquez Roman,Michelle J. Cox,Reona Sakemura,Kun Yun,Mohamad M. Adada,Elizabeth L. Siegler,Olivia Sirpilla,Erin E. Tapper,Carli M. Stewart,Ekene J. Ogbodo,İsmail Can,Kendall J. Schick,Evandro D. Bezerra,Lionel Aurelien Kankeu Fonkoua,Mehrdad Hefazi,Michael W. Ruff,Wei Ding,Sameer A. Parikh,Susan L. Slager,Neil E. Kay,Gloria Olivier,Nathalie Scholler,Adrian Bot,Mike Mattie,Jenny J. Kim,Simone Filosto,Saad S. Kenderian
出处
期刊:Blood [Elsevier BV]
卷期号:138 (Supplement 1): 901-901 被引量:1
标识
DOI:10.1182/blood-2021-148591
摘要

Abstract Introduction: It has become increasingly apparent that chimeric antigen receptor T (CART) cell activation and differentiation level is an important determinant of CART cell fate and response to therapy. In this study, we aimed to 1) measure levels of activation-induced surface death receptors and ligands on CART cells; 2) investigate how CART cell activation could impact their fitness and clinical responses, and 3) identify cell-based targets to modulate CART cell activation, apoptosis, and cytotoxicity to improve anti-tumor activity. Methods: We performed flow cytometric studies on ex-vivo stimulated, clinically annotated CART products of patients with large B cell lymphoma from the pivotal ZUMA-1 clinical trial that led to FDA-approved Axicabtagene ciloleucel (Axi-Cel). We investigated possible correlations of a number of surface death receptors and ligands with T cell differentiation status and post-infusion CART cell expansion, utilizing samples from ZUMA-1 patients who achieved a complete response as a best outcome ('responders') vs patients who achieved stable or progressive disease('non-responders'). CART cell effector functions in vitro were measured, and CART apoptosis was assessed using Annexin V. For in vitro and in vivo functional studies, we used CART19 generated from healthy donors (HD CART19) as indicated in the specific experiment. CRISPR/Cas9 was employed during CART cell production to disrupt specific genes. A xenograft model of lymphoma was used to investigate the in vivo antitumor activity of CART19. Results: Following an ex vivo stimulation of Axi-Cel products with CD19 + target cells, we observed upregulation of death receptors and ligands in CART19 from non-responders, compared to responders. We also observed a possible association between such upregulated surface markers with CART cell differentiation as measured by CCR7 expression. In an extended in vitro co-culture assay, where HD CART19 cells were repeatedly stimulated through the CAR, we found that tumor necrosis factor α receptor 2 (TNFR2), unlike other death receptors and ligands, was persistently elevated, suggesting a possible role for TNFR2 in long-term antigen-dependent CART19 dysfunction (Figure 1A). We further found that HD CART19 upregulate TNFR2, but not TNFR1, upon CAR stimulation (Figure 1B). While non-specific TCR activation (CD3 stimulation) of HD CART19 cells protected them from activation-induced apoptosis, antigen-specific activation through the CAR resulted in significant initiation of apoptosis within 2 hours of stimulation (Figure 1C). Having identified a possible association between TNFR2 and CART19 dysfunction, we aimed to study the impact of TNFR2 knockout on HD CART19 functions. Using CRISPR/Cas9 during CART cell manufacturing, we generated TNFR2 k/o HD CART19 cells with a knockout efficiency of around 50%, where the expression levels of TNFR2 in activated CART19 cells were reduced, compared to control CART19 cells (with non-targeting gRNA CRISPR/Cas9, Figure 1D). TNFR2 k/o CART19 cells demonstrated reduced early activation surface markers compared to control CART19, as measured by CD25 and CD69 surface expression (Figure 1E), reduced apoptosis initiation as measured by the Annexin V assay (Figure 1F), and enhanced antigen-specific proliferation and cytotoxicity (Figure 1G). Finally, in an in vivo xenograft model of CD19 + lymphoma, TNFR2 k/o CART19 resulted in enhanced CART cell expansion and anti-tumor activity (Figure 1H). Conclusions: Our results indicate that TNFR2 plays a role in early activation and apoptosis initiation of CART19 following CAR stimulation with CD19 + target cells and present TNFR2 knockout as a strategy to enhance CART19 anti-tumor activity. Figure 1 Figure 1. Disclosures Cox: Humanigen: Patents & Royalties. Sakemura: Humanigen: Patents & Royalties. Ding: Merck: Membership on an entity's Board of Directors or advisory committees, Research Funding; DTRM: Research Funding; Octapharma: Membership on an entity's Board of Directors or advisory committees. Parikh: Pharmacyclics, MorphoSys, Janssen, AstraZeneca, TG Therapeutics, Bristol Myers Squibb, Merck, AbbVie, and Ascentage Pharma: Research Funding; Pharmacyclics, AstraZeneca, Genentech, Gilead, GlaxoSmithKline, Verastem Oncology, and AbbVie: Membership on an entity's Board of Directors or advisory committees. Kay: Juno Therapeutics: Membership on an entity's Board of Directors or advisory committees; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees, Research Funding; MEI Pharma: Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Dava Oncology: Membership on an entity's Board of Directors or advisory committees; Agios Pharm: Membership on an entity's Board of Directors or advisory committees; Targeted Oncology: Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Membership on an entity's Board of Directors or advisory committees; Acerta Pharma: Research Funding; Genentech: Research Funding; Behring: Membership on an entity's Board of Directors or advisory committees; CytomX Therapeutics: Membership on an entity's Board of Directors or advisory committees; Sunesis: Research Funding; TG Therapeutics: Research Funding; Tolero Pharmaceuticals: Research Funding; Abbvie: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol Meyer Squib: Membership on an entity's Board of Directors or advisory committees, Research Funding; Morpho-sys: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Oncotracker: Membership on an entity's Board of Directors or advisory committees; Rigel: Membership on an entity's Board of Directors or advisory committees. Scholler: Kite: Current Employment. Bot: Kite, a Gilead Company: Current Employment; Gilead Sciences: Consultancy, Current equity holder in publicly-traded company, Other: Travel support. Mattie: Kite: Current Employment. Kim: Gilead Sciences: Current equity holder in publicly-traded company; Kite, a Gilead Company: Current Employment. Filosto: Kite, a Gilead Company: Current Employment; Tusk Therapeutics: Patents & Royalties: or other intellecular property; Gilead Sciences: Other: stock or other ownership . Kenderian: Humanigen, Inc.: Consultancy, Honoraria, Research Funding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大可发布了新的文献求助30
刚刚
闪闪乌龟发布了新的文献求助10
刚刚
刚刚
wen发布了新的文献求助10
刚刚
语物完成签到,获得积分10
刚刚
1秒前
jiejie发布了新的文献求助10
1秒前
我是老大应助HEIHEI采纳,获得10
2秒前
深情安青应助五小采纳,获得10
2秒前
2秒前
芽芽乐完成签到,获得积分10
3秒前
蜡笔小新发布了新的文献求助10
3秒前
3秒前
4秒前
思维隋完成签到 ,获得积分10
4秒前
Lucas应助科研小白菜采纳,获得10
4秒前
4秒前
朴实绝悟完成签到,获得积分10
5秒前
搜集达人应助zhuangyuan采纳,获得10
5秒前
华国锋完成签到,获得积分10
5秒前
5秒前
常常完成签到 ,获得积分10
5秒前
wwwww123完成签到,获得积分10
5秒前
5秒前
长医德莱文完成签到,获得积分10
5秒前
6秒前
xiaorang完成签到,获得积分10
6秒前
6秒前
HH完成签到,获得积分10
7秒前
gej完成签到,获得积分10
7秒前
吴彦祖完成签到,获得积分10
7秒前
7秒前
July应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
July应助科研通管家采纳,获得20
8秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016558
求助须知:如何正确求助?哪些是违规求助? 3556732
关于积分的说明 11322479
捐赠科研通 3289455
什么是DOI,文献DOI怎么找? 1812490
邀请新用户注册赠送积分活动 888053
科研通“疑难数据库(出版商)”最低求助积分说明 812074