Multi-Time Resolution Ensemble LSTMs for Enhanced Feature Extraction in High-Rate Time Series

计算机科学 系列(地层学) 算法 特征(语言学) 启发式 嵌入 人工智能 语言学 生物 哲学 古生物学
作者
Vahid Barzegar,Simon Laflamme,Chao Hu,Jacob Dodson
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:21 (6): 1954-1954 被引量:11
标识
DOI:10.3390/s21061954
摘要

Systems experiencing high-rate dynamic events, termed high-rate systems, typically undergo accelerations of amplitudes higher than 100 g-force in less than 10 ms. Examples include adaptive airbag deployment systems, hypersonic vehicles, and active blast mitigation systems. Given their critical functions, accurate and fast modeling tools are necessary for ensuring the target performance. However, the unique characteristics of these systems, which consist of (1) large uncertainties in the external loads, (2) high levels of non-stationarities and heavy disturbances, and (3) unmodeled dynamics generated from changes in system configurations, in combination with the fast-changing environments, limit the applicability of physical modeling tools. In this paper, a deep learning algorithm is used to model high-rate systems and predict their response measurements. It consists of an ensemble of short-sequence long short-term memory (LSTM) cells which are concurrently trained. To empower multi-step ahead predictions, a multi-rate sampler is designed to individually select the input space of each LSTM cell based on local dynamics extracted using the embedding theorem. The proposed algorithm is validated on experimental data obtained from a high-rate system. Results showed that the use of the multi-rate sampler yields better feature extraction from non-stationary time series compared with a more heuristic method, resulting in significant improvement in step ahead prediction accuracy and horizon. The lean and efficient architecture of the algorithm results in an average computing time of 25 μμs, which is below the maximum prediction horizon, therefore demonstrating the algorithm’s promise in real-time high-rate applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼柒完成签到 ,获得积分10
刚刚
读不完的文献啊完成签到,获得积分10
刚刚
犹豫小蚂蚁完成签到,获得积分10
刚刚
辛勤谷雪发布了新的文献求助10
刚刚
purplelove完成签到 ,获得积分10
刚刚
zp发布了新的文献求助10
刚刚
123完成签到 ,获得积分10
1秒前
1秒前
典雅问寒应助ATM采纳,获得10
1秒前
xyzhang发布了新的文献求助10
2秒前
4秒前
4秒前
wanci应助欢喜的酒窝采纳,获得10
5秒前
纯情的馒头完成签到,获得积分10
5秒前
小巧的映易完成签到,获得积分10
5秒前
唱跳双c发布了新的文献求助10
5秒前
二师兄完成签到,获得积分10
5秒前
5秒前
chchjust完成签到,获得积分10
5秒前
机灵的鸣凤完成签到,获得积分10
6秒前
meidoudou完成签到,获得积分10
6秒前
XJX发布了新的文献求助30
7秒前
7秒前
无际的星空下完成签到,获得积分10
8秒前
caicai应助kk采纳,获得10
8秒前
积极的蘑菇完成签到 ,获得积分10
8秒前
9秒前
9秒前
云淡风轻发布了新的文献求助10
9秒前
只如初完成签到,获得积分10
10秒前
JT完成签到,获得积分10
10秒前
菠萝包完成签到 ,获得积分10
10秒前
所所应助土又鸟采纳,获得30
10秒前
hahhhhhh2完成签到,获得积分10
11秒前
科研通AI5应助慢慢采纳,获得10
11秒前
褚友菱完成签到,获得积分10
11秒前
11秒前
坦率的丹琴完成签到,获得积分20
12秒前
12秒前
JuTou完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3700765
求助须知:如何正确求助?哪些是违规求助? 3251047
关于积分的说明 9872817
捐赠科研通 2963115
什么是DOI,文献DOI怎么找? 1624972
邀请新用户注册赠送积分活动 769625
科研通“疑难数据库(出版商)”最低求助积分说明 742423