非线性系统
控制理论(社会学)
理论(学习稳定性)
计算机科学
自适应控制
Lyapunov稳定性
方案(数学)
事件(粒子物理)
人工神经网络
李雅普诺夫函数
反推
控制(管理)
数学
人工智能
物理
数学分析
机器学习
量子力学
作者
Yuan‐Xin Li,Ming Wei,Shaocheng Tong
出处
期刊:IEEE transactions on cybernetics
[Institute of Electrical and Electronics Engineers]
日期:2021-03-11
卷期号:52 (9): 9481-9489
被引量:54
标识
DOI:10.1109/tcyb.2021.3056990
摘要
This article addresses the finite-time event-triggered adaptive neural control for fractional-order nonlinear systems. Based on the backstepping technique, a novel adaptive event-triggered control scheme is proposed, and finite-time stability criteria are introduced with the aim to ensure that the tracking error enters into a small region around the origin in finite time. Finally, the stability of the closed-loop system is ensured via a fractional Lyapunov function theory and two simulation examples were used to prove the validity of the designed control scheme.
科研通智能强力驱动
Strongly Powered by AbleSci AI