Development of an algorithm for intraoperative autofluorescence assessment of parathyroid glands in primary hyperparathyroidism using artificial intelligence

医学 原发性甲状旁腺功能亢进 甲状旁腺功能亢进 自体荧光 放射科 病理 外科 光学 物理 荧光
作者
Serkan Akbulut,Ozgun Erten,Yoo Seok Kim,Mehmet Gökçeimam,Eren Berber
出处
期刊:Surgery [Elsevier]
卷期号:170 (2): 454-461 被引量:12
标识
DOI:10.1016/j.surg.2021.01.033
摘要

Abstract

Background

Previous work showed that normal and abnormal parathyroid glands exhibit different patterns of autofluorescence, with the former appearing brighter and more homogenous. However, an objective algorithm based on quantified measurements was not provided. The aim of this study is to develop objective algorithms for intraoperative autofluorescence assessment of parathyroid glands in primary hyperparathyroidism using artificial intelligence.

Methods

The utility of near-infrared fluorescence imaging in parathyroidectomy procedures was evaluated in a study approved by the institutional review board. Autofluorescence patterns of parathyroid glands were measured intraoperatively. Comparisons were performed between normal and abnormal glands, as well as between different pathologies. Using machine learning, decision trees were created.

Results

Normal parathyroid glands were brighter (higher normalized autofluorescence pixel intensity) and more homogenous (lower heterogeneity index) compared to abnormal glands. Optimal cutoffs to differentiate normal from abnormal parathyroid glands were >2.0 for normalized autofluorescence intensity (sensitivity 73%, specificity 70%, area under the curve 0.756) and <0.12 for parathyroid heterogeneity index (sensitivity 75%, specificity 81%, area under the curve 0.839). Decision trees created by machine learning using normalized autofluorescence intensity, heterogeneity index, and gland volume were 95% accurate in predicting normal versus abnormal glands and 84% accurate in predicting subclasses of parathyroid pathologies.

Conclusion

To our knowledge, this is the first study to date reporting objective algorithms using quantified autofluorescence data to intraoperatively assess parathyroid glands in primary hyperparathyroidism. These results suggest that objective data can be obtained from autofluorescence signals to help differentiate abnormal parathyroid glands from normal glands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一屿完成签到,获得积分10
1秒前
details发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
FangChen发布了新的文献求助10
3秒前
科研小白应助小脸神神采纳,获得50
3秒前
4秒前
4秒前
海拾月完成签到,获得积分10
5秒前
K先生发布了新的文献求助10
6秒前
李康佳完成签到,获得积分10
6秒前
可爱的函函应助11111采纳,获得10
6秒前
科研通AI6应助岚婘采纳,获得10
6秒前
7秒前
小海狸完成签到,获得积分20
7秒前
Huibo完成签到,获得积分10
7秒前
开朗成风完成签到 ,获得积分10
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
9秒前
李健应助又又采纳,获得10
9秒前
9秒前
幻想小蜜蜂完成签到,获得积分10
9秒前
ajiduo完成签到,获得积分10
9秒前
海拾月发布了新的文献求助30
9秒前
小海狸发布了新的文献求助10
9秒前
英姑应助无有采纳,获得10
11秒前
12秒前
聂先生完成签到,获得积分10
12秒前
诗谙发布了新的文献求助30
12秒前
无花果应助美丽谷槐采纳,获得10
12秒前
大个应助白煮蛋蘸酱油采纳,获得10
13秒前
努力加油发布了新的文献求助10
13秒前
秦文平完成签到 ,获得积分10
13秒前
13秒前
13秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442517
求助须知:如何正确求助?哪些是违规求助? 4552741
关于积分的说明 14238372
捐赠科研通 4474018
什么是DOI,文献DOI怎么找? 2451837
邀请新用户注册赠送积分活动 1442715
关于科研通互助平台的介绍 1418593