Development of an algorithm for intraoperative autofluorescence assessment of parathyroid glands in primary hyperparathyroidism using artificial intelligence

医学 原发性甲状旁腺功能亢进 甲状旁腺功能亢进 自体荧光 放射科 病理 外科 光学 荧光 物理
作者
Serkan Akbulut,Ozgun Erten,Yoo Seok Kim,Mehmet Gökçeimam,Eren Berber
出处
期刊:Surgery [Elsevier]
卷期号:170 (2): 454-461 被引量:12
标识
DOI:10.1016/j.surg.2021.01.033
摘要

Abstract

Background

Previous work showed that normal and abnormal parathyroid glands exhibit different patterns of autofluorescence, with the former appearing brighter and more homogenous. However, an objective algorithm based on quantified measurements was not provided. The aim of this study is to develop objective algorithms for intraoperative autofluorescence assessment of parathyroid glands in primary hyperparathyroidism using artificial intelligence.

Methods

The utility of near-infrared fluorescence imaging in parathyroidectomy procedures was evaluated in a study approved by the institutional review board. Autofluorescence patterns of parathyroid glands were measured intraoperatively. Comparisons were performed between normal and abnormal glands, as well as between different pathologies. Using machine learning, decision trees were created.

Results

Normal parathyroid glands were brighter (higher normalized autofluorescence pixel intensity) and more homogenous (lower heterogeneity index) compared to abnormal glands. Optimal cutoffs to differentiate normal from abnormal parathyroid glands were >2.0 for normalized autofluorescence intensity (sensitivity 73%, specificity 70%, area under the curve 0.756) and <0.12 for parathyroid heterogeneity index (sensitivity 75%, specificity 81%, area under the curve 0.839). Decision trees created by machine learning using normalized autofluorescence intensity, heterogeneity index, and gland volume were 95% accurate in predicting normal versus abnormal glands and 84% accurate in predicting subclasses of parathyroid pathologies.

Conclusion

To our knowledge, this is the first study to date reporting objective algorithms using quantified autofluorescence data to intraoperatively assess parathyroid glands in primary hyperparathyroidism. These results suggest that objective data can be obtained from autofluorescence signals to help differentiate abnormal parathyroid glands from normal glands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助Patronus采纳,获得10
1秒前
linguo发布了新的文献求助50
1秒前
Mzb发布了新的文献求助10
3秒前
乐意你完成签到 ,获得积分10
4秒前
思如泉涌完成签到 ,获得积分10
4秒前
5秒前
5秒前
5秒前
科目三应助草莓月亮采纳,获得10
5秒前
飘逸楷瑞发布了新的文献求助10
6秒前
Young4399发布了新的文献求助10
6秒前
Owen应助reborn采纳,获得10
7秒前
8秒前
8秒前
豪子发布了新的文献求助10
8秒前
尉迟希望应助加菲丰丰采纳,获得10
10秒前
11秒前
SABUBU完成签到,获得积分10
11秒前
丫头发布了新的文献求助10
12秒前
大模型应助欧皇采纳,获得10
13秒前
14秒前
14秒前
情怀应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得30
15秒前
星辰大海应助科研通管家采纳,获得30
15秒前
浮游应助科研通管家采纳,获得20
15秒前
Lucas应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得10
15秒前
阔达千萍应助科研通管家采纳,获得10
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
Jason完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
希望天下0贩的0应助小椰采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5353187
求助须知:如何正确求助?哪些是违规求助? 4485831
关于积分的说明 13964569
捐赠科研通 4386047
什么是DOI,文献DOI怎么找? 2409731
邀请新用户注册赠送积分活动 1402013
关于科研通互助平台的介绍 1375783