Development of an algorithm for intraoperative autofluorescence assessment of parathyroid glands in primary hyperparathyroidism using artificial intelligence

医学 原发性甲状旁腺功能亢进 甲状旁腺功能亢进 自体荧光 放射科 病理 外科 光学 荧光 物理
作者
Serkan Akbulut,Ozgun Erten,Yoo Seok Kim,Mehmet Gökçeimam,Eren Berber
出处
期刊:Surgery [Elsevier]
卷期号:170 (2): 454-461 被引量:12
标识
DOI:10.1016/j.surg.2021.01.033
摘要

Abstract

Background

Previous work showed that normal and abnormal parathyroid glands exhibit different patterns of autofluorescence, with the former appearing brighter and more homogenous. However, an objective algorithm based on quantified measurements was not provided. The aim of this study is to develop objective algorithms for intraoperative autofluorescence assessment of parathyroid glands in primary hyperparathyroidism using artificial intelligence.

Methods

The utility of near-infrared fluorescence imaging in parathyroidectomy procedures was evaluated in a study approved by the institutional review board. Autofluorescence patterns of parathyroid glands were measured intraoperatively. Comparisons were performed between normal and abnormal glands, as well as between different pathologies. Using machine learning, decision trees were created.

Results

Normal parathyroid glands were brighter (higher normalized autofluorescence pixel intensity) and more homogenous (lower heterogeneity index) compared to abnormal glands. Optimal cutoffs to differentiate normal from abnormal parathyroid glands were >2.0 for normalized autofluorescence intensity (sensitivity 73%, specificity 70%, area under the curve 0.756) and <0.12 for parathyroid heterogeneity index (sensitivity 75%, specificity 81%, area under the curve 0.839). Decision trees created by machine learning using normalized autofluorescence intensity, heterogeneity index, and gland volume were 95% accurate in predicting normal versus abnormal glands and 84% accurate in predicting subclasses of parathyroid pathologies.

Conclusion

To our knowledge, this is the first study to date reporting objective algorithms using quantified autofluorescence data to intraoperatively assess parathyroid glands in primary hyperparathyroidism. These results suggest that objective data can be obtained from autofluorescence signals to help differentiate abnormal parathyroid glands from normal glands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助言十采纳,获得10
刚刚
刚刚
1秒前
李爱国应助sdahjjyk采纳,获得10
2秒前
2秒前
zhangmeimei发布了新的文献求助10
2秒前
微信研友发布了新的文献求助10
3秒前
科研小白完成签到,获得积分10
3秒前
搜集达人应助乐观的鸽子采纳,获得10
3秒前
乐乐应助lang采纳,获得10
4秒前
清脆难胜应助海亦采纳,获得10
5秒前
小于一发布了新的文献求助10
5秒前
7秒前
8秒前
9秒前
10秒前
cc完成签到,获得积分10
11秒前
lllzzz236发布了新的文献求助10
12秒前
言十发布了新的文献求助10
12秒前
12秒前
123完成签到 ,获得积分10
12秒前
14秒前
sdahjjyk发布了新的文献求助10
14秒前
Progie完成签到,获得积分10
15秒前
顾北发布了新的文献求助10
15秒前
16秒前
鱼鱼完成签到 ,获得积分10
17秒前
稳重的若雁举报三岁半求助涉嫌违规
17秒前
17秒前
不配.应助zhangmeimei采纳,获得10
18秒前
言十完成签到,获得积分10
19秒前
幸福果汁发布了新的文献求助10
20秒前
小刘要加油完成签到,获得积分10
20秒前
陶醉冷亦发布了新的文献求助10
20秒前
lang发布了新的文献求助10
22秒前
NexusExplorer应助lllzzz236采纳,获得10
22秒前
香酥板栗完成签到,获得积分10
23秒前
眼睛大的从雪完成签到,获得积分10
24秒前
24秒前
Owen应助123采纳,获得10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136234
求助须知:如何正确求助?哪些是违规求助? 2787225
关于积分的说明 7780556
捐赠科研通 2443265
什么是DOI,文献DOI怎么找? 1298990
科研通“疑难数据库(出版商)”最低求助积分说明 625299
版权声明 600870