Optimization modelling to establish false measures implemented with ex-situ plant species to control gully erosion in a monsoon-dominated region with novel in-situ measurements

环境科学 土地退化 土地利用 腐蚀 水文学(农业) 随机森林 原位 计算机科学 地质学 地理 工程类 机器学习 土木工程 气象学 古生物学 岩土工程
作者
Asish Saha,Subodh Chandra Pal,Alireza Arabameri,Indrajit Chowdhuri,Fatemeh Rezaie,Rabin Chakrabortty,Paramita Roy,Manisa Shit
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:287: 112284-112284 被引量:52
标识
DOI:10.1016/j.jenvman.2021.112284
摘要

Water dominated gullies formation and associated land degradation are the foremost challenges among the planners for sustainability and optimization of land resources. This type of hazardous phenomenon is utmost vulnerable due to huge loss of surface soil in the sub-tropical developing countries like India. The present study has been carried out in rugged badland topography of Garhbeta-I Community Development (C.D.) Block in eastern India for assessing the gully erosion susceptibility (GES) mapping and optimization of land use planning. The GES mapping is the first and foremost steps towards minimization this adverse affect and attaining sustainable development. In this study we also describe the importance of plantation and alternation of ex-situ tree species with in-situ species for minimizes the erosional activity. To meet our research goal here we used two prediction based machine learning algorithm (MLA) namely random forest (RF) and boosted regression tree (BRT) and one optimization model of Ecogeography based optimization (EBO). The research study also carried out by using a total of 199, in which 139 (70%) and 60 (30%) gully head-cut points were used for training and validation purposes respectively and treated as dependent factors, and twenty gully erosion conditioning factors as independent variables. These models are validated through receiver operating characteristics-area under the curve (ROC-AUC), accuracy (ACC), precision (PRE) and Kappa coefficient index analysis. The validation result showed that EBO model with the highest values of AUC-0.954, ACC-0.85, PRE-0.877 and Kappa-0.646 is the most accurate model for GES followed by BRT and RF. The outcome results should help for the sustainable development of this rugged badland topography.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助哲小凡采纳,获得10
1秒前
科研通AI2S应助友好元蝶采纳,获得10
1秒前
1秒前
南冥完成签到 ,获得积分10
1秒前
星辰大海应助sweat采纳,获得10
1秒前
丰富丹秋完成签到,获得积分10
1秒前
共享精神应助jialiang采纳,获得10
1秒前
孙Tuan完成签到,获得积分10
2秒前
科研小郭完成签到,获得积分10
2秒前
2秒前
专注的问寒应助乐乐侠采纳,获得20
2秒前
whisper发布了新的文献求助10
2秒前
思源应助灵巧妙柏采纳,获得10
2秒前
wy.he应助科研通管家采纳,获得10
3秒前
隐形曼青应助不想起床采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
三岁应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
4秒前
三岁应助科研通管家采纳,获得10
4秒前
4秒前
林早上完成签到 ,获得积分10
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
三岁应助科研通管家采纳,获得10
4秒前
gj520完成签到,获得积分10
4秒前
4秒前
asdfzxcv应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
干净寻冬应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得40
4秒前
ding应助科研通管家采纳,获得10
4秒前
5秒前
刘大米完成签到,获得积分10
5秒前
5秒前
852应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648015
求助须知:如何正确求助?哪些是违规求助? 4774710
关于积分的说明 15042383
捐赠科研通 4807069
什么是DOI,文献DOI怎么找? 2570494
邀请新用户注册赠送积分活动 1527283
关于科研通互助平台的介绍 1486389