Optimization modelling to establish false measures implemented with ex-situ plant species to control gully erosion in a monsoon-dominated region with novel in-situ measurements

环境科学 土地退化 土地利用 腐蚀 水文学(农业) 随机森林 原位 计算机科学 地质学 地理 工程类 机器学习 土木工程 气象学 古生物学 岩土工程
作者
Asish Saha,Subodh Chandra Pal,Alireza Arabameri,Indrajit Chowdhuri,Fatemeh Rezaie,Rabin Chakrabortty,Paramita Roy,Manisa Shit
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:287: 112284-112284 被引量:52
标识
DOI:10.1016/j.jenvman.2021.112284
摘要

Water dominated gullies formation and associated land degradation are the foremost challenges among the planners for sustainability and optimization of land resources. This type of hazardous phenomenon is utmost vulnerable due to huge loss of surface soil in the sub-tropical developing countries like India. The present study has been carried out in rugged badland topography of Garhbeta-I Community Development (C.D.) Block in eastern India for assessing the gully erosion susceptibility (GES) mapping and optimization of land use planning. The GES mapping is the first and foremost steps towards minimization this adverse affect and attaining sustainable development. In this study we also describe the importance of plantation and alternation of ex-situ tree species with in-situ species for minimizes the erosional activity. To meet our research goal here we used two prediction based machine learning algorithm (MLA) namely random forest (RF) and boosted regression tree (BRT) and one optimization model of Ecogeography based optimization (EBO). The research study also carried out by using a total of 199, in which 139 (70%) and 60 (30%) gully head-cut points were used for training and validation purposes respectively and treated as dependent factors, and twenty gully erosion conditioning factors as independent variables. These models are validated through receiver operating characteristics-area under the curve (ROC-AUC), accuracy (ACC), precision (PRE) and Kappa coefficient index analysis. The validation result showed that EBO model with the highest values of AUC-0.954, ACC-0.85, PRE-0.877 and Kappa-0.646 is the most accurate model for GES followed by BRT and RF. The outcome results should help for the sustainable development of this rugged badland topography.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Passion采纳,获得10
刚刚
MXJ完成签到,获得积分10
1秒前
科研通AI5应助热心的早晨采纳,获得10
1秒前
txy完成签到,获得积分10
1秒前
1秒前
GCY完成签到,获得积分10
1秒前
cc完成签到,获得积分10
1秒前
han完成签到,获得积分10
2秒前
111完成签到,获得积分20
2秒前
通~发布了新的文献求助10
3秒前
hhh关闭了hhh文献求助
3秒前
章丘吴彦祖完成签到,获得积分20
3秒前
4秒前
研友_nv2r4n完成签到,获得积分10
4秒前
狂野觅云完成签到,获得积分10
4秒前
4秒前
小石完成签到,获得积分10
5秒前
独特的飞烟完成签到,获得积分10
5秒前
5秒前
科研猪完成签到,获得积分10
6秒前
大个应助qqwxp采纳,获得10
6秒前
jennifercui完成签到,获得积分10
6秒前
SXM完成签到,获得积分10
6秒前
酷酷的起眸完成签到,获得积分10
7秒前
细腻沅完成签到,获得积分10
7秒前
LILING完成签到,获得积分10
7秒前
123发布了新的文献求助10
8秒前
赖床艺术家完成签到,获得积分10
9秒前
领导范儿应助通~采纳,获得10
10秒前
端庄的黑米完成签到,获得积分10
10秒前
10秒前
领导范儿应助坤坤采纳,获得10
10秒前
11秒前
神勇的雅香应助司徒迎曼采纳,获得10
11秒前
11秒前
bkagyin应助椰子采纳,获得10
11秒前
Owen应助舒服的茹嫣采纳,获得10
11秒前
呼吸之野应助按住心动采纳,获得20
12秒前
12秒前
身为风帆发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740