Optimization modelling to establish false measures implemented with ex-situ plant species to control gully erosion in a monsoon-dominated region with novel in-situ measurements

环境科学 土地退化 土地利用 腐蚀 水文学(农业) 随机森林 原位 计算机科学 地质学 地理 工程类 机器学习 土木工程 气象学 古生物学 岩土工程
作者
Asish Saha,Subodh Chandra Pal,Alireza Arabameri,Indrajit Chowdhuri,Fatemeh Rezaie,Rabin Chakrabortty,Paramita Roy,Manisa Shit
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:287: 112284-112284 被引量:52
标识
DOI:10.1016/j.jenvman.2021.112284
摘要

Water dominated gullies formation and associated land degradation are the foremost challenges among the planners for sustainability and optimization of land resources. This type of hazardous phenomenon is utmost vulnerable due to huge loss of surface soil in the sub-tropical developing countries like India. The present study has been carried out in rugged badland topography of Garhbeta-I Community Development (C.D.) Block in eastern India for assessing the gully erosion susceptibility (GES) mapping and optimization of land use planning. The GES mapping is the first and foremost steps towards minimization this adverse affect and attaining sustainable development. In this study we also describe the importance of plantation and alternation of ex-situ tree species with in-situ species for minimizes the erosional activity. To meet our research goal here we used two prediction based machine learning algorithm (MLA) namely random forest (RF) and boosted regression tree (BRT) and one optimization model of Ecogeography based optimization (EBO). The research study also carried out by using a total of 199, in which 139 (70%) and 60 (30%) gully head-cut points were used for training and validation purposes respectively and treated as dependent factors, and twenty gully erosion conditioning factors as independent variables. These models are validated through receiver operating characteristics-area under the curve (ROC-AUC), accuracy (ACC), precision (PRE) and Kappa coefficient index analysis. The validation result showed that EBO model with the highest values of AUC-0.954, ACC-0.85, PRE-0.877 and Kappa-0.646 is the most accurate model for GES followed by BRT and RF. The outcome results should help for the sustainable development of this rugged badland topography.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助ok123采纳,获得10
1秒前
Su发布了新的文献求助10
1秒前
Wang完成签到,获得积分10
1秒前
wanwei完成签到,获得积分10
1秒前
香蕉静芙完成签到,获得积分20
1秒前
LCC发布了新的文献求助10
2秒前
JamesPei应助tcf采纳,获得10
2秒前
冷静新烟发布了新的文献求助10
2秒前
2秒前
木木完成签到 ,获得积分10
3秒前
4秒前
烟花应助快点毕业采纳,获得30
5秒前
郭柳含发布了新的文献求助10
5秒前
万能图书馆应助风风风采纳,获得10
6秒前
英姑应助陪你去流浪采纳,获得10
6秒前
雪白的凡灵完成签到,获得积分10
6秒前
思源应助5km采纳,获得10
6秒前
kwm关闭了kwm文献求助
7秒前
7秒前
顾矜应助123采纳,获得30
7秒前
大个应助1111采纳,获得10
8秒前
8秒前
郭先森发布了新的文献求助10
8秒前
Tree完成签到 ,获得积分10
8秒前
Ava应助jam采纳,获得10
8秒前
lcyss发布了新的文献求助10
9秒前
chaobada完成签到,获得积分10
9秒前
piers应助Never采纳,获得10
9秒前
livialiu完成签到,获得积分10
10秒前
10秒前
曾宪俊完成签到 ,获得积分10
11秒前
bkagyin应助tcf采纳,获得10
11秒前
火星上的冬云完成签到,获得积分10
11秒前
woo完成签到,获得积分10
11秒前
Jj发布了新的文献求助10
11秒前
Sugar完成签到,获得积分10
12秒前
13秒前
ssssssssci完成签到,获得积分10
13秒前
13秒前
Owen应助咿咿采纳,获得10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016130
求助须知:如何正确求助?哪些是违规求助? 3556145
关于积分的说明 11320169
捐赠科研通 3289087
什么是DOI,文献DOI怎么找? 1812382
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812051