选择性
催化作用
甲烷
介质阻挡放电
化学
碳纤维
化学工程
材料科学
无机化学
核化学
有机化学
物理化学
复合数
电极
工程类
复合材料
作者
Debjyoti Ray,Devadutta Nepak,T. Vinodkumar,Ch. Subrahmanyam
出处
期刊:Energy
[Elsevier]
日期:2019-09-01
卷期号:183: 630-638
被引量:25
标识
DOI:10.1016/j.energy.2019.06.147
摘要
The CO2 reforming of CH4 to synthesis gas is performed in a dielectric barrier discharge (DBD) plasma coupled with g-C3N4, g-C3N4/TiO2, g-C3N4/ZnO and g-C3N4/mixed oxide (2.5 wt% ZnO and 2.5 wt% TiO2) catalysts. For CH4 and CO2 gases, the highest conversion is obtained with 5 wt% TiO2 + g-C3N4 and 5 wt% ZnO + g-C3N4, respectively. The g-C3N4 and 5 wt% TiO2 + g-C3N4 catalysts shows poor selectivity towards H2 and CO formation. Whereas, 5 wt% ZnO + g-C3N4 exhibits the highest H2 and CO selectivity. However, with increasing SIE the CO selectivity decreases over 5 wt% ZnO + g-C3N4. The selectivity towards H2 and CO are found to be optimal over 5 wt% MO (1:1) + g-C3N4 and the combination of TiO2 + ZnO coupled with g-C3N4 significantly improves the carbon balance. This optimum performance by 5 wt% MO (1:1) + g-C3N4 in providing the best carbon balance is due to the combination of electronic and acid-base characteristics of the catalysts. The generation of various active species is evidenced by emission spectroscopic study.
科研通智能强力驱动
Strongly Powered by AbleSci AI