乙状窦函数
非线性系统
泰勒级数
离散时间和连续时间
数学
凸组合
正多边形
功能(生物学)
计算机科学
算法
递归最小平方滤波器
应用数学
控制理论(社会学)
数学优化
人工神经网络
凸优化
统计
人工智能
自适应滤波器
数学分析
物理
几何学
生物
进化生物学
量子力学
控制(管理)
作者
Jiao-Jun Zhang,Hong-Sen Yan
标识
DOI:10.1109/icspcc.2018.8567777
摘要
The convex combination of two multi-dimensional Taylor networks (MTNs) is presented to identify the time-varying nonlinear discrete-time systems. By taking the weight coefficients of the two MTNs as time-varying parameters that need training online to reflect the system’s input and output changes. An improved recursive least squares (IRLS) algorithm that obtained by introducing a variable forgetting factor is used to train the weight coefficients for the first MTN, and the second MTN is trained by a normalized least squares algorithm. In addition, the sigmoid activation function and gradient algorithm are introduced to adjust the combination coefficient. The validity of the proposed method is confirmed through a numerical example.
科研通智能强力驱动
Strongly Powered by AbleSci AI