已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Migraine classification using somatosensory evoked potentials

体感诱发电位 医学 偏头痛 体感系统 神经科学 偏头痛 物理医学与康复 听力学 麻醉 心理学 精神科
作者
Bingzhao Zhu,Gianluca Coppola,Mahsa Shoaran
出处
期刊:Cephalalgia [SAGE Publishing]
卷期号:39 (9): 1143-1155 被引量:58
标识
DOI:10.1177/0333102419839975
摘要

The automatic detection of migraine states using electrophysiological recordings may play a key role in migraine diagnosis and early treatment. Migraineurs are characterized by a deficit of habituation in cortical information processing, causing abnormal changes of somatosensory evoked potentials. Here, we propose a machine learning approach to utilize somatosensory evoked potential-based biomarkers for migraine classification in a noninvasive setting.Forty-two migraine patients, including 29 interictal and 13 ictal, were recruited and compared with 15 healthy volunteers of similar age and gender distribution. The right median nerve somatosensory evoked potentials were collected from all subjects. State-of-the-art machine learning algorithms including random forest, extreme gradient-boosting trees, support vector machines, K-nearest neighbors, multilayer perceptron, linear discriminant analysis, and logistic regression were used for classification and were built upon somatosensory evoked potential features in time and frequency domains. A feature selection method was employed to assess the contribution of features and compare it with previous clinical findings, and to build an optimal feature set by removing redundant features.Using a set of relevant features and different machine learning models, accuracies ranging from 51.2% to 72.4% were achieved for the healthy volunteers-ictal-interictal classification task. Following model and feature selection, we successfully separated the three groups of subjects with an accuracy of 89.7% for the healthy volunteers-ictal, 88.7% for healthy volunteers-interictal, 80.2% for ictal-interictal, and 73.3% for healthy volunteers-ictal-interictal classification tasks, respectively.Our proposed model suggests the potential use of somatosensory evoked potentials as a prominent and reliable signal in migraine classification. This non-invasive somatosensory evoked potential-based classification system offers the potential to reliably separate migraine patients in ictal and interictal states from healthy controls.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jjjjchou完成签到,获得积分10
1秒前
bhfhq完成签到,获得积分10
4秒前
bhh完成签到,获得积分10
4秒前
14秒前
於紫槐完成签到,获得积分10
16秒前
安安完成签到,获得积分10
22秒前
22秒前
23秒前
迟大猫应助科研通管家采纳,获得10
23秒前
大模型应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
迟大猫应助科研通管家采纳,获得10
24秒前
迟大猫应助科研通管家采纳,获得10
24秒前
彭于晏应助科研通管家采纳,获得10
24秒前
迟大猫应助科研通管家采纳,获得10
24秒前
迟大猫应助科研通管家采纳,获得10
24秒前
猪猪hero应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
24秒前
我是老大应助科研通管家采纳,获得10
24秒前
25秒前
情怀应助科研通管家采纳,获得10
25秒前
迟大猫应助科研通管家采纳,获得10
25秒前
Orange应助科研通管家采纳,获得10
25秒前
迟大猫应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
Akim应助科研通管家采纳,获得10
25秒前
wanci应助科研通管家采纳,获得10
25秒前
快乐水完成签到,获得积分10
26秒前
26秒前
迟大猫应助科研通管家采纳,获得10
26秒前
cc应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得30
26秒前
充电宝应助科研通管家采纳,获得10
26秒前
迟大猫应助科研通管家采纳,获得10
26秒前
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
迟大猫应助科研通管家采纳,获得10
27秒前
迟大猫应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674104
求助须知:如何正确求助?哪些是违规求助? 3229553
关于积分的说明 9785998
捐赠科研通 2940020
什么是DOI,文献DOI怎么找? 1611595
邀请新用户注册赠送积分活动 761012
科研通“疑难数据库(出版商)”最低求助积分说明 736344