A Novel Weakly Supervised Multitask Architecture for Retinal Lesions Segmentation on Fundus Images

人工智能 计算机科学 分割 卷积神经网络 预处理器 基本事实 模式识别(心理学) 图像分割 眼底(子宫) 像素 深度学习 计算机视觉 医学 放射科
作者
Clément Playout,Renaud Duval,Farida Chériet
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (10): 2434-2444 被引量:86
标识
DOI:10.1109/tmi.2019.2906319
摘要

Obtaining the complete segmentation map of retinal lesions is the first step toward an automated diagnosis tool for retinopathy that is interpretable in its decision-making. However, the limited availability of ground truth lesion detection maps at a pixel level restricts the ability of deep segmentation neural networks to generalize over large databases. In this paper, we propose a novel approach for training a convolutional multi-task architecture with supervised learning and reinforcing it with weakly supervised learning. The architecture is simultaneously trained for three tasks: segmentation of red lesions and of bright lesions, those two tasks done concurrently with lesion detection. In addition, we propose and discuss the advantages of a new preprocessing method that guarantees the color consistency between the raw image and its enhanced version. Our complete system produces segmentations of both red and bright lesions. The method is validated at the pixel level and per-image using four databases and a cross-validation strategy. When evaluated on the task of screening for the presence or absence of lesions on the Messidor image set, the proposed method achieves an area under the ROC curve of 0.839, comparable with the state-of-the-art.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老北京发布了新的文献求助10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
1秒前
今后应助科研通管家采纳,获得10
1秒前
Cleo应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
坚果应助科研通管家采纳,获得10
1秒前
可爱草丛应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
芬达发布了新的文献求助10
1秒前
wanci应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
坚果应助科研通管家采纳,获得10
2秒前
Cleo应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
可爱草丛应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
laber应助科研通管家采纳,获得50
3秒前
Akim应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
坚果应助科研通管家采纳,获得10
3秒前
xzy998应助科研通管家采纳,获得10
3秒前
Zx_1993应助科研通管家采纳,获得20
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
xzy998应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560014
求助须知:如何正确求助?哪些是违规求助? 4645187
关于积分的说明 14674421
捐赠科研通 4586310
什么是DOI,文献DOI怎么找? 2516345
邀请新用户注册赠送积分活动 1490000
关于科研通互助平台的介绍 1460841