Multisource Transfer Learning for Cross-Subject EEG Emotion Recognition

学习迁移 水准点(测量) 脑电图 选择(遗传算法) 软件部署 计算机科学 机器学习 语音识别 可靠性(半导体) 校准 心理学 人工智能 精神科 操作系统 物理 统计 功率(物理) 量子力学 数学 地理 大地测量学
作者
Jinpeng Li,Shuang Qiu,Yuanyuan Shen,Cheng‐Lin Liu,Huiguang He
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:296
标识
DOI:10.1109/tcyb.2019.2904052
摘要

Electroencephalogram (EEG) has been widely used in emotion recognition due to its high temporal resolution and reliability. Since the individual differences of EEG are large, the emotion recognition models could not be shared across persons, and we need to collect new labeled data to train personal models for new users. In some applications, we hope to acquire models for new persons as fast as possible, and reduce the demand for the labeled data amount. To achieve this goal, we propose a multisource transfer learning method, where existing persons are sources, and the new person is the target. The target data are divided into calibration sessions for training and subsequent sessions for test. The first stage of the method is source selection aimed at locating appropriate sources. The second is style transfer mapping, which reduces the EEG differences between the target and each source. We use few labeled data in the calibration sessions to conduct source selection and style transfer. Finally, we integrate the source models to recognize emotions in the subsequent sessions. The experimental results show that the three-category classification accuracy on benchmark SEED improves by 12.72% comparing with the nontransfer method. Our method facilitates the fast deployment of emotion recognition models by reducing the reliance on the labeled data amount, which has practical significance especially in fast-deployment scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
chrisio完成签到,获得积分10
5秒前
jason完成签到 ,获得积分10
6秒前
瘾迷者发布了新的文献求助10
6秒前
夏天特慢发布了新的文献求助10
6秒前
momo发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
戚小发布了新的文献求助30
9秒前
今后应助xing采纳,获得10
9秒前
星辰大海应助科研采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
共享精神应助李卓航采纳,获得10
10秒前
MO完成签到,获得积分10
11秒前
清欢发布了新的文献求助10
11秒前
心灵美平彤完成签到 ,获得积分10
12秒前
12秒前
12秒前
12秒前
学霸土豆发布了新的文献求助10
13秒前
悦耳的灵发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
共享精神应助YuLu采纳,获得10
18秒前
祖乐萱完成签到,获得积分10
19秒前
19秒前
雍雍发布了新的文献求助10
19秒前
20秒前
20秒前
努力努力完成签到,获得积分10
20秒前
20秒前
科研通AI6应助夏天特慢采纳,获得10
21秒前
jason0023发布了新的文献求助10
21秒前
21秒前
大模型应助怕黑剑封采纳,获得10
22秒前
李卓航发布了新的文献求助10
22秒前
取名叫做利完成签到,获得积分10
23秒前
kdjc完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714