Multisource Transfer Learning for Cross-Subject EEG Emotion Recognition

学习迁移 水准点(测量) 脑电图 选择(遗传算法) 软件部署 计算机科学 机器学习 语音识别 可靠性(半导体) 校准 心理学 人工智能 精神科 操作系统 物理 统计 功率(物理) 量子力学 数学 地理 大地测量学
作者
Jinpeng Li,Shuang Qiu,Yuanyuan Shen,Cheng‐Lin Liu,Huiguang He
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:296
标识
DOI:10.1109/tcyb.2019.2904052
摘要

Electroencephalogram (EEG) has been widely used in emotion recognition due to its high temporal resolution and reliability. Since the individual differences of EEG are large, the emotion recognition models could not be shared across persons, and we need to collect new labeled data to train personal models for new users. In some applications, we hope to acquire models for new persons as fast as possible, and reduce the demand for the labeled data amount. To achieve this goal, we propose a multisource transfer learning method, where existing persons are sources, and the new person is the target. The target data are divided into calibration sessions for training and subsequent sessions for test. The first stage of the method is source selection aimed at locating appropriate sources. The second is style transfer mapping, which reduces the EEG differences between the target and each source. We use few labeled data in the calibration sessions to conduct source selection and style transfer. Finally, we integrate the source models to recognize emotions in the subsequent sessions. The experimental results show that the three-category classification accuracy on benchmark SEED improves by 12.72% comparing with the nontransfer method. Our method facilitates the fast deployment of emotion recognition models by reducing the reliance on the labeled data amount, which has practical significance especially in fast-deployment scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助刘厚麟采纳,获得10
2秒前
YeMa完成签到,获得积分10
2秒前
2秒前
3秒前
可不可乐发布了新的文献求助10
3秒前
852应助个性的荆采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
12完成签到,获得积分10
6秒前
SaSa关注了科研通微信公众号
6秒前
Ran完成签到 ,获得积分10
7秒前
希望天下0贩的0应助xiaohui采纳,获得30
8秒前
12发布了新的文献求助10
9秒前
幸运星发布了新的文献求助10
10秒前
10秒前
呱呱呱发布了新的文献求助10
11秒前
游悠悠发布了新的文献求助10
11秒前
12秒前
邓敬燃发布了新的文献求助10
12秒前
12秒前
12秒前
番fan发布了新的文献求助10
12秒前
13秒前
13秒前
yznfly应助x1采纳,获得20
13秒前
14秒前
情怀应助聪慧石头采纳,获得10
15秒前
MSYzack发布了新的文献求助10
15秒前
15秒前
吃货发布了新的文献求助10
16秒前
16秒前
16秒前
个性的荆发布了新的文献求助10
17秒前
10711发布了新的文献求助10
18秒前
lgx完成签到,获得积分10
19秒前
Ss发布了新的文献求助20
19秒前
夏木发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642013
求助须知:如何正确求助?哪些是违规求助? 4757923
关于积分的说明 15015955
捐赠科研通 4800475
什么是DOI,文献DOI怎么找? 2566095
邀请新用户注册赠送积分活动 1524208
关于科研通互助平台的介绍 1483840