Multisource Transfer Learning for Cross-Subject EEG Emotion Recognition

学习迁移 水准点(测量) 脑电图 选择(遗传算法) 软件部署 计算机科学 机器学习 语音识别 可靠性(半导体) 校准 心理学 人工智能 精神科 操作系统 物理 统计 功率(物理) 量子力学 数学 地理 大地测量学
作者
Jinpeng Li,Shuang Qiu,Yuanyuan Shen,Cheng‐Lin Liu,Huiguang He
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:296
标识
DOI:10.1109/tcyb.2019.2904052
摘要

Electroencephalogram (EEG) has been widely used in emotion recognition due to its high temporal resolution and reliability. Since the individual differences of EEG are large, the emotion recognition models could not be shared across persons, and we need to collect new labeled data to train personal models for new users. In some applications, we hope to acquire models for new persons as fast as possible, and reduce the demand for the labeled data amount. To achieve this goal, we propose a multisource transfer learning method, where existing persons are sources, and the new person is the target. The target data are divided into calibration sessions for training and subsequent sessions for test. The first stage of the method is source selection aimed at locating appropriate sources. The second is style transfer mapping, which reduces the EEG differences between the target and each source. We use few labeled data in the calibration sessions to conduct source selection and style transfer. Finally, we integrate the source models to recognize emotions in the subsequent sessions. The experimental results show that the three-category classification accuracy on benchmark SEED improves by 12.72% comparing with the nontransfer method. Our method facilitates the fast deployment of emotion recognition models by reducing the reliance on the labeled data amount, which has practical significance especially in fast-deployment scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
SciGPT应助跳跃的小林采纳,获得10
1秒前
3秒前
SONG发布了新的文献求助10
5秒前
999999发布了新的文献求助10
6秒前
IU2021发布了新的文献求助10
7秒前
清秀冰岚完成签到,获得积分10
8秒前
杨德帅发布了新的文献求助10
8秒前
充电宝应助马不停蹄采纳,获得10
9秒前
善学以致用应助欣喜冷卉采纳,获得10
9秒前
10秒前
10秒前
Kristopher完成签到 ,获得积分10
10秒前
11秒前
希望天下0贩的0应助lokiyyy采纳,获得10
11秒前
悦耳怜珊完成签到,获得积分10
13秒前
13秒前
AKA发布了新的文献求助10
14秒前
赘婿应助执着书南采纳,获得10
15秒前
GUGE发布了新的文献求助10
16秒前
16秒前
16秒前
哀伤发布了新的文献求助10
16秒前
xccc完成签到,获得积分10
16秒前
搞怪的金鑫完成签到,获得积分10
17秒前
LiangRen发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
如果天气好的话完成签到,获得积分10
19秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
haoliu完成签到,获得积分10
19秒前
华仔应助霸气慕山采纳,获得10
21秒前
巧语发布了新的文献求助10
22秒前
李健应助屈勇旭采纳,获得10
22秒前
乐乐应助科研民工李采纳,获得10
24秒前
jianglili完成签到,获得积分10
24秒前
Orange应助Passskd采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680081
求助须知:如何正确求助?哪些是违规求助? 4995956
关于积分的说明 15171678
捐赠科研通 4839887
什么是DOI,文献DOI怎么找? 2593687
邀请新用户注册赠送积分活动 1546696
关于科研通互助平台的介绍 1504768