Prediction and Risk Stratification of Kidney Outcomes in IgA Nephropathy

医学 肾脏疾病 内科学 肾功能 肾病 回顾性队列研究 比例危险模型 队列 逻辑回归 糖尿病 内分泌学
作者
Tingyu Chen,Xiang Li,Yingxue Li,Eryu Xia,Yong Qin,Shaoshan Liang,Feng Xu,Dandan Liang,Caihong Zeng,Zhihong Liu
出处
期刊:American Journal of Kidney Diseases [Elsevier BV]
卷期号:74 (3): 300-309 被引量:153
标识
DOI:10.1053/j.ajkd.2019.02.016
摘要

Rationale & Objective Immunoglobulin A nephropathy (IgAN) is common worldwide and has heterogeneous phenotypes. Predicting long-term outcomes and stratifying risk are important for clinical decision making and designing future clinical trials. Study Design Multicenter retrospective cohort study of 2,047 patients with IgAN. Setting & Participants Derivation and validation cohorts composed of 1,022 Chinese patients with IgAN from a single center and 1,025 patients with IgAN from 18 renal centers, respectively. Predictors 36 characteristics, including demographic, clinical, and pathologic variables. Outcomes Combined event of end-stage kidney disease or 50% reduction in estimated glomerular filtration rate within 5 years after diagnostic kidney biopsy. Analytical Approach A gradient tree boosting method implemented in the eXtreme Gradient Boosting (XGBoost) system was used to select the 10 most important variables from 36 candidate variables. Stepwise Cox regression analysis was used to derive a simplified scoring scale model (SSM) based on these 10 variables. Model discrimination and calibration were assessed using the C statistic and Hosmer-Lemeshow test. Risk stratification of the SSM was evaluated using Kaplan-Meier analysis. Results In the derivation and validation cohorts, 74 and 114 patients reached the outcome, respectively. XGBoost predicted the outcome with a C statistic of 0.84 (95% CI, 0.80-0.88) for the validation cohort. The SSM included 3 variables: urine protein excretion, global sclerosis, and tubular atrophy/interstitial fibrosis. Using Kaplan-Meier analysis, the SSM identified significant risk stratification (P < 0.001). Limitations Retrospective study design, application for other ethnic groups needs to be verified. Conclusions A prediction model using routinely available characteristics and based on the combination of a machine learning algorithm and survival analysis can stratify risk for kidney disease progression in the setting of IgAN. An online calculator, the Nanjing IgAN Risk Stratification System, permits easy implementation of this model. Immunoglobulin A nephropathy (IgAN) is common worldwide and has heterogeneous phenotypes. Predicting long-term outcomes and stratifying risk are important for clinical decision making and designing future clinical trials. Multicenter retrospective cohort study of 2,047 patients with IgAN. Derivation and validation cohorts composed of 1,022 Chinese patients with IgAN from a single center and 1,025 patients with IgAN from 18 renal centers, respectively. 36 characteristics, including demographic, clinical, and pathologic variables. Combined event of end-stage kidney disease or 50% reduction in estimated glomerular filtration rate within 5 years after diagnostic kidney biopsy. A gradient tree boosting method implemented in the eXtreme Gradient Boosting (XGBoost) system was used to select the 10 most important variables from 36 candidate variables. Stepwise Cox regression analysis was used to derive a simplified scoring scale model (SSM) based on these 10 variables. Model discrimination and calibration were assessed using the C statistic and Hosmer-Lemeshow test. Risk stratification of the SSM was evaluated using Kaplan-Meier analysis. In the derivation and validation cohorts, 74 and 114 patients reached the outcome, respectively. XGBoost predicted the outcome with a C statistic of 0.84 (95% CI, 0.80-0.88) for the validation cohort. The SSM included 3 variables: urine protein excretion, global sclerosis, and tubular atrophy/interstitial fibrosis. Using Kaplan-Meier analysis, the SSM identified significant risk stratification (P < 0.001). Retrospective study design, application for other ethnic groups needs to be verified. A prediction model using routinely available characteristics and based on the combination of a machine learning algorithm and survival analysis can stratify risk for kidney disease progression in the setting of IgAN. An online calculator, the Nanjing IgAN Risk Stratification System, permits easy implementation of this model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神外第一刀完成签到 ,获得积分10
刚刚
Yes0419完成签到,获得积分10
2秒前
阿尼完成签到 ,获得积分10
3秒前
孤独的大灰狼完成签到 ,获得积分10
12秒前
1774995274发布了新的文献求助10
15秒前
糊涂生活糊涂过完成签到 ,获得积分10
20秒前
拓跋傲薇完成签到,获得积分10
23秒前
orchid完成签到,获得积分10
23秒前
自然之水完成签到,获得积分10
25秒前
pw完成签到 ,获得积分10
25秒前
1774995274发布了新的文献求助10
34秒前
janer完成签到 ,获得积分0
35秒前
wakawaka发布了新的文献求助10
36秒前
meng完成签到 ,获得积分10
40秒前
霹雳枕头完成签到 ,获得积分10
45秒前
淀粉肠完成签到 ,获得积分10
46秒前
光亮的远航完成签到 ,获得积分10
48秒前
keyan完成签到,获得积分10
52秒前
英俊的含蕾完成签到 ,获得积分10
57秒前
积极的蘑菇完成签到 ,获得积分10
58秒前
nini完成签到,获得积分10
1分钟前
NewMoona完成签到 ,获得积分10
1分钟前
杨宁完成签到 ,获得积分10
1分钟前
1分钟前
孙皓然发布了新的文献求助10
1分钟前
CUN完成签到,获得积分10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
和平使命应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
排骨炖豆角完成签到,获得积分10
1分钟前
Yuuuu完成签到 ,获得积分10
1分钟前
yy完成签到 ,获得积分10
1分钟前
爱蕊咖完成签到 ,获得积分10
1分钟前
lu完成签到,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671358
求助须知:如何正确求助?哪些是违规求助? 3228175
关于积分的说明 9778776
捐赠科研通 2938469
什么是DOI,文献DOI怎么找? 1610028
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 736020