已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Application of a machine learning method to whole brain white matter injury after radiotherapy for nasopharyngeal carcinoma

鼻咽癌 医学 放射治疗 白质 白色(突变) 病理 放射科 磁共振成像 生物化学 基因 化学
作者
Xi Leng,Peng Fang,Huan Lin,Chunhong Qin,Xin Tan,Yi Liang,Chi Zhang,Hongzhuo Wang,Jie An,Donglin Wu,Qihui Liu,Shijun Qiu
出处
期刊:Cancer Imaging [Springer Nature]
卷期号:19 (1) 被引量:20
标识
DOI:10.1186/s40644-019-0203-y
摘要

The purpose/aim of this study was to 1) use magnetic resonance diffusion tensor imaging (DTI), fibre bundle/tract-based spatial statistics (TBSS) and machine learning methods to study changes in the white matter (WM) structure and whole brain WM network in different periods of the nasopharyngeal carcinoma (NPC) patients after radiotherapy (RT), 2) identify the most discriminating WM regions and WM connections as biomarkers of radiation brain injury (RBI), and 3) supplement the understanding of the pathogenesis of RBI, which is useful for early diagnosis in the clinic. A DTI scan was performed in 77 patients and 67 normal controls. A fractional anisotropy map was generated by DTIFit. TBSS was used to find the region where the FA differed between the case and control groups. Each resulting FA value image is registered with each other to create an average FA value skeleton. Each resultant FA skeleton image was connected to feature vectors, and features with significant differences were extracted and classified using a support vector machine (SVM). Next, brain segmentation was performed on each subject's DTI image using automated anatomical labeling (AAL), and deterministic white matter fiber bundle tracking was performed to generate symmetrical brain matrix, select the upper triangular component as a classification feature. Two-sample t-test was used to extract the features with significant differences, then classified by SVM. Finally, we adopted a permutation test and ROC curves to evaluate the reliability of the classifier. For FA, the accuracy of classification between the 0–6, 6–12 and > 12 months post-RT groups and the control group was 84.5, 83.9 and 74.5%, respectively. In the case groups, the FA with discriminative ability was reduced, mainly in the bilateral cerebellum and bilateral temporal lobe, with prolonged time, the damage was aggravated. For WM connections, the SVM classifier classification recognition rates of the 0–6, 6–12 and > 12 months post-RT groups reached 82.5, 78.4 and 76.3%, respectively. The WM connections with discriminative ability were reduced. RBI is a disease involving whole brain WM network anomalies. These brain discriminating WM regions and WM connection modes can supplement the understanding of RBI and be used as biomarkers for the early clinical diagnosis of RBI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HMG1COA完成签到 ,获得积分10
刚刚
1秒前
zxinyi发布了新的文献求助30
2秒前
WYJ完成签到,获得积分10
4秒前
情怀应助专一的乐枫采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得80
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
大气小天鹅完成签到 ,获得积分10
7秒前
Ak完成签到,获得积分10
7秒前
白白完成签到 ,获得积分10
9秒前
王震完成签到,获得积分10
10秒前
15秒前
tree完成签到,获得积分10
16秒前
cathe发布了新的文献求助10
18秒前
怨虎叔完成签到,获得积分10
21秒前
Orange应助HEIKU采纳,获得50
22秒前
大帅比完成签到 ,获得积分10
23秒前
lalalatiancai完成签到,获得积分10
23秒前
kyfbrahha完成签到 ,获得积分10
24秒前
24秒前
26秒前
YBR发布了新的文献求助10
26秒前
cathe完成签到,获得积分10
26秒前
29秒前
研友_Zb1rln发布了新的文献求助10
30秒前
江上游完成签到 ,获得积分10
30秒前
li完成签到 ,获得积分10
31秒前
Zzddslj完成签到 ,获得积分10
33秒前
15847348169发布了新的文献求助10
34秒前
共享精神应助Zxc采纳,获得10
35秒前
Leviathan完成签到 ,获得积分10
35秒前
狗十七完成签到 ,获得积分10
36秒前
37秒前
accept完成签到 ,获得积分10
38秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477379
求助须知:如何正确求助?哪些是违规求助? 3068812
关于积分的说明 9109727
捐赠科研通 2760297
什么是DOI,文献DOI怎么找? 1514760
邀请新用户注册赠送积分活动 700461
科研通“疑难数据库(出版商)”最低求助积分说明 699566