A hybrid approach for measuring the vibrational trend of hydroelectric unit with enhanced multi-scale chaotic series analysis and optimized least squares support vector machine

混乱的 奇异值分解 系列(地层学) 算法 组分(热力学) 超参数优化 希尔伯特-黄变换 计算机科学 信号(编程语言) 支持向量机 最小二乘函数近似 奇异谱分析 振动 残余物 数学优化 数学 人工智能 统计 古生物学 物理 量子力学 估计员 生物 程序设计语言 热力学 滤波器(信号处理) 计算机视觉
作者
Wenlong Fu,Kai Wang,Chu Zhang,Jiawen Tan
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE]
卷期号:41 (15): 4436-4449 被引量:61
标识
DOI:10.1177/0142331219860279
摘要

Accurate vibrational trend measuring for hydroelectric unit (HEU) is of great significance for safe and economic operation of unit. For this purpose, a novel hybrid approach based on variational mode decomposition (VMD), singular value decomposition (SVD)-based phase space reconstruction (PSR) and least squares support vector machine (LSSVM) improved with adaptive sine cosine algorithm optimization (ASCA) is proposed. Firstly, the raw vibration signal is preprocessed into several components with different scales by VMD, while the residual of VMD is defined as an additional component. Then, SVD with median filtering is utilized to unearth the dominating characteristic ingredients of each component, with which the chaotic series analysis will be effectively implemented. Moreover, the optimal parameters of PSR for each original component are determined by applying grid search on the corresponding dominating component. Later, LSSVM improved by ASCA are established for all the components, whose inputs and outputs are obtained by performing PSR with the optimal parameters. Finally, the measuring results of vibration trend are deduced by accumulating the prediction values of all the components. Furthermore, five related methods are employed to evaluate the effectiveness of the proposed approach. The results illustrate that: (1) the VMD-based models obtained better evaluation indexes compared with the relevant models through significantly weakening the non-stationarity of the original signal; (2) the proposed SVD-based PSR enhanced efficiency of chaotic system restoration, thus to improve the measuring accuracy effectively; (3) the proposed ASCA optimization algorithm could effectively search the parameters of LSSCVM, which contributes to improving model performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
junyang发布了新的文献求助10
2秒前
谷歌狗完成签到,获得积分20
3秒前
田様应助一给我里giao采纳,获得10
4秒前
Green发布了新的文献求助10
5秒前
5秒前
乐乐应助ww采纳,获得10
7秒前
7秒前
chenchen完成签到 ,获得积分10
8秒前
鲤鱼眼睛发布了新的文献求助10
9秒前
10秒前
10秒前
小虫完成签到,获得积分10
12秒前
Cat应助虚拟的谷菱采纳,获得300
13秒前
蔡雨岑发布了新的文献求助10
13秒前
14秒前
17秒前
17秒前
18秒前
明理丹烟应助蔡雨岑采纳,获得10
18秒前
19秒前
年少的人发布了新的文献求助10
20秒前
Youth完成签到,获得积分20
21秒前
调研昵称发布了新的文献求助10
22秒前
CodeCraft应助Singularity采纳,获得10
22秒前
limbo发布了新的文献求助10
22秒前
RUI完成签到 ,获得积分10
23秒前
decade发布了新的文献求助10
23秒前
23秒前
研友_LX02xL发布了新的文献求助10
24秒前
25秒前
诗和远方的,完成签到,获得积分10
25秒前
刘星宇发布了新的文献求助10
28秒前
28秒前
研友_VZG7GZ应助17采纳,获得10
29秒前
谦让夜香发布了新的文献求助10
29秒前
Zhao完成签到,获得积分20
30秒前
30秒前
欠虐宝宝发布了新的文献求助10
30秒前
妙狸发布了新的文献求助10
31秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055748
求助须知:如何正确求助?哪些是违规求助? 2712398
关于积分的说明 7431409
捐赠科研通 2357400
什么是DOI,文献DOI怎么找? 1248780
科研通“疑难数据库(出版商)”最低求助积分说明 606786
版权声明 596163