A hybrid approach for measuring the vibrational trend of hydroelectric unit with enhanced multi-scale chaotic series analysis and optimized least squares support vector machine

混乱的 奇异值分解 系列(地层学) 算法 组分(热力学) 超参数优化 希尔伯特-黄变换 计算机科学 信号(编程语言) 支持向量机 最小二乘函数近似 奇异谱分析 振动 残余物 数学优化 数学 人工智能 统计 古生物学 物理 量子力学 估计员 生物 程序设计语言 热力学 滤波器(信号处理) 计算机视觉
作者
Wenlong Fu,Kai Wang,Chu Zhang,Jiawen Tan
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE]
卷期号:41 (15): 4436-4449 被引量:61
标识
DOI:10.1177/0142331219860279
摘要

Accurate vibrational trend measuring for hydroelectric unit (HEU) is of great significance for safe and economic operation of unit. For this purpose, a novel hybrid approach based on variational mode decomposition (VMD), singular value decomposition (SVD)-based phase space reconstruction (PSR) and least squares support vector machine (LSSVM) improved with adaptive sine cosine algorithm optimization (ASCA) is proposed. Firstly, the raw vibration signal is preprocessed into several components with different scales by VMD, while the residual of VMD is defined as an additional component. Then, SVD with median filtering is utilized to unearth the dominating characteristic ingredients of each component, with which the chaotic series analysis will be effectively implemented. Moreover, the optimal parameters of PSR for each original component are determined by applying grid search on the corresponding dominating component. Later, LSSVM improved by ASCA are established for all the components, whose inputs and outputs are obtained by performing PSR with the optimal parameters. Finally, the measuring results of vibration trend are deduced by accumulating the prediction values of all the components. Furthermore, five related methods are employed to evaluate the effectiveness of the proposed approach. The results illustrate that: (1) the VMD-based models obtained better evaluation indexes compared with the relevant models through significantly weakening the non-stationarity of the original signal; (2) the proposed SVD-based PSR enhanced efficiency of chaotic system restoration, thus to improve the measuring accuracy effectively; (3) the proposed ASCA optimization algorithm could effectively search the parameters of LSSCVM, which contributes to improving model performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助萧水白采纳,获得100
2秒前
Gstar完成签到,获得积分10
2秒前
2秒前
4秒前
北林发布了新的文献求助10
6秒前
我要读博士完成签到 ,获得积分10
10秒前
FashionBoy应助myl采纳,获得10
12秒前
cheryl完成签到,获得积分10
14秒前
15秒前
莫问今生完成签到,获得积分10
16秒前
18秒前
19秒前
20秒前
SciGPT应助Saluzi采纳,获得10
20秒前
dgfhg完成签到,获得积分10
21秒前
清爽灰狼发布了新的文献求助10
23秒前
guilin应助喵总采纳,获得10
23秒前
北林完成签到,获得积分10
25秒前
CodeCraft应助谷粱靖柔采纳,获得10
29秒前
30秒前
30秒前
30秒前
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
深情安青应助科研通管家采纳,获得10
31秒前
华仔应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
彭于晏应助科研通管家采纳,获得10
31秒前
Solarenergy完成签到,获得积分0
32秒前
33秒前
狗蛋完成签到,获得积分10
34秒前
34秒前
ajiduo发布了新的文献求助10
34秒前
二宝发布了新的文献求助10
36秒前
Saluzi发布了新的文献求助10
36秒前
36秒前
无花果应助super chan采纳,获得10
38秒前
39秒前
兔子不爱吃胡萝卜完成签到,获得积分10
39秒前
40秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147980
求助须知:如何正确求助?哪些是违规求助? 2798977
关于积分的说明 7833117
捐赠科研通 2456104
什么是DOI,文献DOI怎么找? 1307127
科研通“疑难数据库(出版商)”最低求助积分说明 628062
版权声明 601620