A hybrid approach for measuring the vibrational trend of hydroelectric unit with enhanced multi-scale chaotic series analysis and optimized least squares support vector machine

混乱的 奇异值分解 系列(地层学) 算法 组分(热力学) 超参数优化 希尔伯特-黄变换 计算机科学 信号(编程语言) 支持向量机 最小二乘函数近似 奇异谱分析 振动 残余物 数学优化 数学 人工智能 统计 古生物学 物理 量子力学 估计员 生物 程序设计语言 热力学 滤波器(信号处理) 计算机视觉
作者
Wenlong Fu,Kai Wang,Chu Zhang,Jiawen Tan
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE Publishing]
卷期号:41 (15): 4436-4449 被引量:61
标识
DOI:10.1177/0142331219860279
摘要

Accurate vibrational trend measuring for hydroelectric unit (HEU) is of great significance for safe and economic operation of unit. For this purpose, a novel hybrid approach based on variational mode decomposition (VMD), singular value decomposition (SVD)-based phase space reconstruction (PSR) and least squares support vector machine (LSSVM) improved with adaptive sine cosine algorithm optimization (ASCA) is proposed. Firstly, the raw vibration signal is preprocessed into several components with different scales by VMD, while the residual of VMD is defined as an additional component. Then, SVD with median filtering is utilized to unearth the dominating characteristic ingredients of each component, with which the chaotic series analysis will be effectively implemented. Moreover, the optimal parameters of PSR for each original component are determined by applying grid search on the corresponding dominating component. Later, LSSVM improved by ASCA are established for all the components, whose inputs and outputs are obtained by performing PSR with the optimal parameters. Finally, the measuring results of vibration trend are deduced by accumulating the prediction values of all the components. Furthermore, five related methods are employed to evaluate the effectiveness of the proposed approach. The results illustrate that: (1) the VMD-based models obtained better evaluation indexes compared with the relevant models through significantly weakening the non-stationarity of the original signal; (2) the proposed SVD-based PSR enhanced efficiency of chaotic system restoration, thus to improve the measuring accuracy effectively; (3) the proposed ASCA optimization algorithm could effectively search the parameters of LSSCVM, which contributes to improving model performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HSA发布了新的文献求助10
刚刚
霸气以菱发布了新的文献求助10
2秒前
领导范儿应助小雒雒采纳,获得10
3秒前
斯文冷亦完成签到 ,获得积分10
6秒前
8秒前
8秒前
9秒前
9秒前
10秒前
10秒前
李健的小迷弟应助小安采纳,获得10
11秒前
妮儿发布了新的文献求助10
11秒前
哒哒哒发布了新的文献求助10
13秒前
淡淡代玉发布了新的文献求助20
13秒前
小袁完成签到,获得积分10
13秒前
等待冰露发布了新的文献求助10
14秒前
huangbaba11完成签到 ,获得积分0
14秒前
迷人成协发布了新的文献求助10
14秒前
小雒雒发布了新的文献求助10
15秒前
传奇3应助阿邱采纳,获得10
19秒前
ZONG完成签到,获得积分10
21秒前
哒哒哒完成签到,获得积分10
21秒前
22秒前
23秒前
24秒前
阿明完成签到,获得积分10
25秒前
26秒前
NMR发布了新的文献求助10
28秒前
30秒前
乐观小蕊完成签到 ,获得积分10
31秒前
无花果应助shiyu Fang采纳,获得10
31秒前
luoyujia完成签到,获得积分10
31秒前
wing00024完成签到,获得积分10
35秒前
阿邱发布了新的文献求助10
35秒前
sia发布了新的文献求助10
35秒前
37秒前
任性的静枫完成签到,获得积分10
37秒前
领导范儿应助科研通管家采纳,获得10
38秒前
慕青应助科研通管家采纳,获得20
38秒前
Singularity应助科研通管家采纳,获得10
38秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997679
求助须知:如何正确求助?哪些是违规求助? 3537190
关于积分的说明 11270985
捐赠科研通 3276344
什么是DOI,文献DOI怎么找? 1806900
邀请新用户注册赠送积分活动 883582
科研通“疑难数据库(出版商)”最低求助积分说明 809975