反推
控制理论(社会学)
参数统计
有界函数
趋同(经济学)
跟踪误差
Lyapunov稳定性
跟踪(教育)
理论(学习稳定性)
欧拉角
李雅普诺夫函数
计算机科学
数学
数学优化
自适应控制
控制(管理)
非线性系统
人工智能
数学分析
心理学
教育学
统计
物理
几何学
量子力学
机器学习
经济
经济增长
作者
Dingran Dong,Chuanjiang Li,Yanchao Sun
标识
DOI:10.1109/ccdc.2018.8407334
摘要
Based on the backstepping method, this paper investigates the distributed finite-time tracking control problem for Euler-Lagrange systems under directed graph. We consider that only some of the followers can receive information of the dynamic leader. There exist system parametric uncertainties which can be linearized while parameter-linearity property is used to approximate the uncertainties. Backstepping method and Lyapunov stability theory are utilized to prove that the tracking errors and adaptive estimation errors are bounded. Further, the finite-time convergence property of the tracking errors is proved by increasing control gains. Numerical simulations are provided to show the effectiveness of the proposed control algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI