散斑噪声
斑点图案
计算机科学
卷积神经网络
噪音(视频)
降噪
人工智能
全息术
数字全息术
计算机视觉
图像噪声
还原(数学)
电子散斑干涉技术
光学
模式识别(心理学)
图像(数学)
物理
数学
几何学
作者
Wonseok Jeon,Wooyoung Jeong,Kyung Jin Son,Hyunseok Yang
出处
期刊:Optics Letters
[The Optical Society]
日期:2018-08-28
卷期号:43 (17): 4240-4240
被引量:70
摘要
In this Letter, we propose a fast speckle noise reduction method with only a single reconstructed image based on convolutional neural networks. The proposed network has multi-sized kernels that can capture the speckle noise component effectively from digital holographic images. For robust noise reduction performance, the network is trained with a large noisy image dataset that has object-dependent noise and a wide range of noise levels. The experimental results show the fast, robust, and outstanding speckle noise reduction performance of the proposed approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI