Combining elemental analysis of toenails and machine learning techniques as a non-invasive diagnostic tool for the robust classification of type-2 diabetes

人工智能 2型糖尿病 机器学习 随机森林 糖尿病 接收机工作特性 计算机科学 算法 医学 数学 内分泌学
作者
Jake A. Carter,Christina S. Long,Beth P. Smith,Thomas L. Smith,George L. Donati
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:115: 245-255 被引量:42
标识
DOI:10.1016/j.eswa.2018.08.002
摘要

Described for the first time is the use of elemental analysis of diabetic toenails and machine learning techniques for the robust classification of type-2 diabetes. Aluminum, Cs, Ni, V and Zn concentrations in toenails were found to be significantly (p < 0.05) different between healthy volunteers and type-2 diabetes patients. Seven different machine learning algorithms were then studied to develop a non-invasive diagnostic method using concentrations of twenty-two elements in toenails, and personal information such as age, gender and smoking history as features. Models were enhanced through feature selection and two different ensembling strategies. The performance of forty-six distinct machine learning models were compared on resampled training data and testing data. A random forest model, trained with concentrations of Al, Ba, Ca, Cr, Cs, Cu, Fe, Mg, Mn, Ni, P, Pb, Rb, S, Sb, Se, Sn, Sr, V and Zn (µg g−1), as well as information on age, gender and smoking history, had an area under the receiver operating characteristic curve (AUC) of 0.73 on the training data, and correctly predicted seven out of nine test samples (including control and disease), with an AUC of 0.90. The results at this stage of the research prove the concept of combining elemental analysis of toenails and machine learning techniques for non-invasively diagnosing type-2 diabetes. With proper sample collection and shipping, mobility-limited patients may be able to mail toenail samples for analysis and monitor their type-2 diabetes over time. A health clinic equipped with common instrumentation, software and trained algorithms similar to those used in the present study may be able to serve a large number of patients from across the world.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VDC应助纪智勇采纳,获得30
刚刚
llll完成签到,获得积分20
1秒前
13134发布了新的文献求助10
1秒前
思源应助lief2002采纳,获得10
2秒前
2秒前
9979发布了新的文献求助10
3秒前
炼丹发布了新的文献求助10
3秒前
4秒前
6秒前
认真的南蕾完成签到,获得积分10
6秒前
6秒前
zero发布了新的文献求助10
7秒前
licheng完成签到,获得积分10
7秒前
9秒前
哈哈完成签到,获得积分10
10秒前
憨憨发布了新的文献求助30
10秒前
zhao发布了新的文献求助10
11秒前
hmgdktf完成签到,获得积分10
12秒前
jessie完成签到,获得积分10
12秒前
四火完成签到,获得积分10
12秒前
哈哈应助吕佩昌采纳,获得10
13秒前
13秒前
15秒前
JamesPei应助炼丹采纳,获得10
15秒前
潇洒路灯完成签到 ,获得积分10
15秒前
AIME发布了新的文献求助10
16秒前
17秒前
9979完成签到,获得积分10
19秒前
心动发布了新的文献求助10
20秒前
zhao完成签到,获得积分20
20秒前
GS发布了新的文献求助10
20秒前
妮可粒子完成签到,获得积分10
20秒前
脑洞疼应助lili-采纳,获得10
20秒前
邱航完成签到,获得积分10
21秒前
共享精神应助13134采纳,获得10
23秒前
完美世界应助AIME采纳,获得10
23秒前
坦率的海豚完成签到,获得积分10
26秒前
27秒前
科目三应助小圭采纳,获得30
27秒前
王添发布了新的文献求助10
28秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3433940
求助须知:如何正确求助?哪些是违规求助? 3031105
关于积分的说明 8940918
捐赠科研通 2719112
什么是DOI,文献DOI怎么找? 1491653
科研通“疑难数据库(出版商)”最低求助积分说明 689357
邀请新用户注册赠送积分活动 685523