Importance evaluation of spectral lines in Laser-induced breakdown spectroscopy for classification of pathogenic bacteria

主成分分析 人工智能 支持向量机 模式识别(心理学) 分类器(UML) 随机森林 特征(语言学) 激光诱导击穿光谱 特征提取 计算机科学 数学 激光器 物理 光学 语言学 哲学
作者
Qianqian Wang,Geer Teng,Xiaolei Qiao,Yu Zhao,Jinglin Kong,Liqiang Dong,Xutai Cui
出处
期刊:Biomedical Optics Express [Optica Publishing Group]
卷期号:9 (11): 5837-5837 被引量:27
标识
DOI:10.1364/boe.9.005837
摘要

The correct classification of pathogenic bacteria is significant for clinical diagnosis and treatment. Compared with the use of whole spectral data, using feature lines as the inputs of the classification model can improve the correct classification rate (CCR) and reduce the analyzing time. In order to select feature lines, we need to investigate the contribution to the CCR of each spectral line. In this paper, two algorithms, important weights based on principal component analysis (IW-PCA) and random forests (RF), were proposed to evaluate the importance of spectra lines. The laser-induced plasma spectra (LIBS) of six common clinical pathogenic bacteria species were measured and a support vector machine (SVM) classifier was used to classify the LIBS of bacteria species. In the proposed IW-PCA algorithm, the product of the loading of each line and the variance of the corresponding principal component were calculated. The maximum product of each line calculated from the first three PCs was used to represent the line's importance weight. In the RF algorithm, the Gini index reduction value of each line was considered as the line's importance weight. The experimental results demonstrated that the lines with high importance were more suitable for classification and can be chosen as feature lines. The optimal number of feature lines used in the SVM classifier can be determined by comparing the CCRs with a different number of feature lines. Importance weights evaluated by RF are more suitable for extracting feature lines using LIBS combined with an SVM classification mechanism than those evaluated by IW-PCA. Furthermore, the two methods mutually verified the importance of selected lines and the lines evaluated important by both IW-PCA and RF contributed more to the CCR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
威武豌豆发布了新的文献求助20
1秒前
山乞凡完成签到 ,获得积分10
2秒前
2秒前
2秒前
充电宝应助小心科研采纳,获得10
3秒前
毕业发布了新的文献求助10
3秒前
寒子川完成签到,获得积分20
6秒前
ding应助威武豌豆采纳,获得20
7秒前
8秒前
ding应助minute采纳,获得10
9秒前
赘婿应助t421788416采纳,获得10
11秒前
毕业完成签到,获得积分20
12秒前
13秒前
glomming完成签到,获得积分10
16秒前
orixero应助杨杨杨采纳,获得10
17秒前
我是老大应助毕业采纳,获得10
17秒前
17秒前
沉默的幻枫给沉默的幻枫的求助进行了留言
17秒前
18秒前
20秒前
t421788416完成签到,获得积分10
20秒前
Ngu完成签到,获得积分10
21秒前
细心松鼠完成签到,获得积分20
22秒前
t421788416发布了新的文献求助10
22秒前
minute发布了新的文献求助10
25秒前
Wei关注了科研通微信公众号
25秒前
细心的夜安完成签到,获得积分20
25秒前
25秒前
27秒前
思源应助科研小桶采纳,获得10
29秒前
野原完成签到,获得积分10
31秒前
虞映秋发布了新的文献求助10
31秒前
minute完成签到,获得积分10
33秒前
科研通AI5应助yewungs采纳,获得10
33秒前
33秒前
FG发布了新的文献求助10
33秒前
谷大强完成签到,获得积分10
35秒前
我不是BOB发布了新的文献求助50
35秒前
36秒前
GLP完成签到,获得积分20
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672384
求助须知:如何正确求助?哪些是违规求助? 3228736
关于积分的说明 9781794
捐赠科研通 2939160
什么是DOI,文献DOI怎么找? 1610638
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174