没食子酸
尼奥体
阳离子聚合
化学
溴化物
核化学
色谱法
抗氧化剂
生物化学
小泡
有机化学
膜
作者
Puxvadee Chaikul,Nuntawat Khat‐udomkiri,Kochchawan Iangthanarat,Jiradej Manosroi,Aranya Manosroi
标识
DOI:10.1016/j.ejps.2019.02.008
摘要
Physicochemical characteristics and in vitro anti-skin aging activity of gallic acid loaded in niosomes were investigated. Gallic acid was loaded in neutral (Brij 52/cholesterol at 7:3) and cationic CTAB niosomes (Brij 52/cholesterol/cetyltrimethylammonium bromide at 7:3:0.65). The maximum loading capacity and entrapment efficiency of gallic acid were 3.5, 4.48 ± 2.10 in neutral and 50%, w/w, 10.94 ± 0.78% in cationic CTAB niosomes, respectively. All gallic acid loaded in niosomes showed the unilamellar structure under transmission electron microscope with size range of 131.23–508.03 nm at initial and after storage for 3 months. The highest remaining percentage of gallic acid at all storage temperatures after 3 months was about 77% when loaded in the cationic CTAB niosome, whereas gallic acid in solution was about 64%. The release profiles of gallic acid loaded in neutral and cationic CTAB niosomes revealed the gradual release in 24 h. The cytotoxicity of gallic acid loaded in neutral and cationic CTAB niosomes appeared the non-cytotoxic effect in B16F10 melanoma cells and human skin fibroblasts. The cationic CTAB niosome loaded with gallic acid demonstrated the highest anti-skin aging activity, including melanin suppression effect (55.92 ± 4.92% of control) by inhibition of tyrosinase (53.18 ± 3.67% of control) and tyrosinase-related protein-2 (24.61 ± 7.92% of control), antioxidant (87.03 ± 0.99% cell viability) and inhibition of matrix metalloproteinase-2 (38.46 ± 1.53% of control). This study has demonstrated the superior stability and anti-skin aging activity of gallic acid loaded in cationic CTAB niosome for potential utilization in pharmaceutical and cosmetic products.
科研通智能强力驱动
Strongly Powered by AbleSci AI