材料科学
全息术
波前
极化(电化学)
平面的
光电子学
纳米技术
可重构性
超材料
计算机科学
光学
物理
电信
计算机图形学(图像)
物理化学
化学
作者
Tong Cui,Benfeng Bai,Hong‐Bo Sun
标识
DOI:10.1002/adfm.201806692
摘要
Abstract Metasurfaces, planer artificial materials composed of subwavelength unit cells, have shown superior abilities to manipulate the wavefronts of electromagnetic waves. In the last few years, metasurfaces have been a burgeoning field of research, with a large variety of functional devices, including planar lenses, beam deflectors, polarization converters, and metaholograms, being demonstrated. Up to date, the majority of metasurfaces cannot be tuned postfabrication. Yet, the dynamic control of optical properties of metasurfaces is highly desirable for a plethora of applications including free space optical communications, holographic displays, and depth sensing. Recently, much effort has been made to exploit active materials, whose optical properties can be controlled under external stimuli, for the dynamic control of metasurfaces. The tunability enabled by active materials can be attributed to various mechanisms, including but not limited to thermo‐optic effects, free‐carrier effects, and phase transitions. This short review summarizes the recent progress on tunable metasurfaces based on various approaches and analyzes their respective advantages and challenges to be confronted with. A number of potential future directions are also discussed at the end.
科研通智能强力驱动
Strongly Powered by AbleSci AI