亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data‐driven multiscale sparse representation for bearing fault diagnosis in wind turbine

传动系 涡轮机 方位(导航) 断层(地质) 计算机科学 振动 停工期 风力发电 信号(编程语言) 状态监测 噪音(视频) 控制理论(社会学) 工程类 人工智能 扭矩 声学 航空航天工程 电气工程 地震学 地质学 物理 控制(管理) 图像(数学) 热力学 程序设计语言 操作系统
作者
Yanjie Guo,Zhibin Zhao,Ruo-Bin Sun,Xuefeng Chen
出处
期刊:Wind Energy [Wiley]
卷期号:22 (4): 587-604 被引量:17
标识
DOI:10.1002/we.2309
摘要

Abstract With the increase of the wind turbine capacity, failures occur on the drivetrain of wind turbines frequently. Since faults of bearings in the wind turbine can lead to long downtime and even casualties, fault diagnosis of the drivetrain is very important to reduce the maintenance cost of the wind turbine and improve economic efficiency. However, the traditional diagnosis methods have difficulty in extracting the impulsive components from the vibration signal of the wind turbine because of heavy background noise and harmonic interference. In this paper, we propose a novel method based on data‐driven multiscale dictionary construction. Firstly, we achieve the useful atom through training the K ‐means singular value decomposition (K‐SVD) model with a standard signal. Secondly, we deform the chosen atom into different shapes and construct the final dictionary. Thirdly, the constructed dictionary is used to sparsely represent the vibration signal, and orthogonal matching pursuit (OMP) is performed to extract the impulsive component. The proposed method is robust to harmonic interference and heavy background noise. Moreover, the effectiveness of the proposed method is validated by numerical simulation and two experimental cases including the bearing fault of the wind turbine generator in the field test. The overall results indicate that compared with traditional methods, the proposed method is able to extract the fault characteristics from the measured signals more efficiently.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7_2U1完成签到,获得积分20
4秒前
11秒前
12秒前
Panther完成签到,获得积分10
16秒前
47秒前
RE完成签到 ,获得积分10
48秒前
量子星尘发布了新的文献求助30
52秒前
paannqi完成签到,获得积分10
52秒前
zone54188完成签到,获得积分10
1分钟前
1分钟前
Wa1Zh0u发布了新的文献求助30
1分钟前
嘻嘻完成签到,获得积分10
1分钟前
liman发布了新的文献求助30
1分钟前
summer完成签到,获得积分10
1分钟前
噜噜完成签到,获得积分10
2分钟前
隐形曼青应助噜噜采纳,获得30
2分钟前
2分钟前
小珂完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
愿景发布了新的文献求助10
4分钟前
平常寄容发布了新的文献求助10
4分钟前
我是老大应助徐志豪采纳,获得10
4分钟前
平常寄容完成签到,获得积分20
4分钟前
Wa1Zh0u完成签到,获得积分20
4分钟前
bkagyin应助愿景采纳,获得10
4分钟前
5分钟前
归尘应助liman采纳,获得10
5分钟前
Twonej应助Wa1Zh0u采纳,获得30
5分钟前
5分钟前
Jasper应助科研通管家采纳,获得30
5分钟前
Akim应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
yg发布了新的文献求助10
5分钟前
5分钟前
5分钟前
BowieHuang应助Wa1Zh0u采纳,获得10
5分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723993
求助须知:如何正确求助?哪些是违规求助? 5283171
关于积分的说明 15299496
捐赠科研通 4872203
什么是DOI,文献DOI怎么找? 2616637
邀请新用户注册赠送积分活动 1566530
关于科研通互助平台的介绍 1523401