联盟
梯度升压
出勤
决策树
人气
计算机科学
统计
门票
机器学习
随机森林
人工智能
数学
心理学
经济
计算机安全
社会心理学
经济增长
天文
物理
作者
Barry King,Jennifer L. Rice,Julie Vaughan
出处
期刊:The journal of prediction markets
[University of Buckingham Press]
日期:2018-12-05
卷期号:12 (2): 85-98
被引量:5
标识
DOI:10.5750/jpm.v12i2.1608
摘要
Research predicting National Hockey League average attendance is presented. The seasons examined are the 2013 hockey season through the beginning of the 2017 hockey season. Multiple linear regression and three machine learning algorithms – random forest, M5 prime, and extreme gradient boosting – are employed to predict out-of-sample average home game attendance. Extreme gradient boosting generated the lowest out-of-sample root mean square error. The team identifier (team name), the number of Twitter followers (a surrogate for team popularity), median ticket price, and arena capacity have appeared as the top four predictor variables.
科研通智能强力驱动
Strongly Powered by AbleSci AI