Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions

太赫兹辐射 石墨烯 谐波 迪拉克费米子 高次谐波产生 物理 太赫兹间隙 Dirac(视频压缩格式) 电子 光电子学 太赫兹光谱与技术 光学 远红外激光器 量子力学 电压 太赫兹超材料 中微子 激光器
作者
Hassan A. Hafez,Sergey Kovalev,Jan‐Christoph Deinert,Zoltán Mics,Bertram Green,Nilesh Awari,Min Chen,Semyon Germanskiy,U. Lehnert,J. Teichert,Zhe Wang,Klaas‐Jan Tielrooij,Zhaoyang Liu,Zongping Chen,Akimitsu Narita,Kläus Müllen,Mischa Bonn,Michael Gensch,Dmitry Turchinovich
出处
期刊:Nature [Nature Portfolio]
卷期号:561 (7724): 507-511 被引量:355
标识
DOI:10.1038/s41586-018-0508-1
摘要

Multiple optical harmonic generation—the multiplication of photon energy as a result of nonlinear interaction between light and matter—is a key technology in modern electronics and optoelectronics, because it allows the conversion of optical or electronic signals into signals with much higher frequency, and the generation of frequency combs. Owing to the unique electronic band structure of graphene, which features massless Dirac fermions1–3, it has been repeatedly predicted that optical harmonic generation in graphene should be particularly efficient at the technologically important terahertz frequencies4–6. However, these predictions have yet to be confirmed experimentally under technologically relevant operation conditions. Here we report the generation of terahertz harmonics up to the seventh order in single-layer graphene at room temperature and under ambient conditions, driven by terahertz fields of only tens of kilovolts per centimetre, and with field conversion efficiencies in excess of 10−3, 10−4 and 10−5 for the third, fifth and seventh terahertz harmonics, respectively. These conversion efficiencies are remarkably high, given that the electromagnetic interaction occurs in a single atomic layer. The key to such extremely efficient generation of terahertz high harmonics in graphene is the collective thermal response of its background Dirac electrons to the driving terahertz fields. The terahertz harmonics, generated via hot Dirac fermion dynamics, were observed directly in the time domain as electromagnetic field oscillations at these newly synthesized higher frequencies. The effective nonlinear optical coefficients of graphene for the third, fifth and seventh harmonics exceed the respective nonlinear coefficients of typical solids by 7–18 orders of magnitude7–9. Our results provide a direct pathway to highly efficient terahertz frequency synthesis using the present generation of graphene electronics, which operate at much lower fundamental frequencies of only a few hundreds of gigahertz. Efficient terahertz harmonic generation—challenging but important for ultrahigh-speed optoelectronic technologies—is demonstrated in graphene through a nonlinear process that could potentially be generalized to other materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gxmu6322发布了新的文献求助10
刚刚
烟花应助极地东风采纳,获得10
1秒前
1秒前
1秒前
ABBYTHU18完成签到,获得积分10
2秒前
ilk666完成签到,获得积分10
2秒前
复杂便当发布了新的文献求助10
2秒前
2秒前
jiaru发布了新的文献求助10
2秒前
2秒前
wangye完成签到,获得积分10
3秒前
欧阳振应助雪白葵阴采纳,获得10
3秒前
gll206发布了新的文献求助10
4秒前
书羽完成签到,获得积分0
4秒前
江江完成签到,获得积分10
4秒前
赘婿应助123采纳,获得10
5秒前
知了发布了新的文献求助10
5秒前
敏感初露完成签到,获得积分10
5秒前
5秒前
希望天下0贩的0应助277采纳,获得10
6秒前
儒雅沛凝发布了新的文献求助10
6秒前
zz完成签到,获得积分10
6秒前
6秒前
7秒前
黑崎一护完成签到,获得积分10
7秒前
大胆的向日葵应助syx采纳,获得10
7秒前
7秒前
7秒前
Tiffany发布了新的文献求助10
8秒前
敏感初露发布了新的文献求助10
8秒前
过氧化氢应助王不王采纳,获得10
10秒前
不能说的秘密完成签到,获得积分10
11秒前
羊驼罐头完成签到,获得积分10
11秒前
gxmu6322完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
阿巴阿巴完成签到,获得积分10
11秒前
11秒前
上官若男应助舒庆春采纳,获得10
12秒前
demom完成签到 ,获得积分10
12秒前
wynne313发布了新的文献求助10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582