Unsupervised Scoliosis Diagnosis via a Joint Recognition Method with Multifeature Descriptors and Centroids Extraction

人工智能 脊柱侧凸 质心 模式识别(心理学) 计算机科学 椎骨 分割 判别式 初始化 医学 解剖 外科 程序设计语言
作者
Liyuan Zhang,Jiashi Zhao,Huamin Yang,Zhengang Jiang,Qingliang Li
出处
期刊:Computational and Mathematical Methods in Medicine [Hindawi Publishing Corporation]
卷期号:2018: 1-14 被引量:3
标识
DOI:10.1155/2018/6213264
摘要

To solve the problem of scoliosis recognition without a labeled dataset, an unsupervised method is proposed by combining the cascade gentle AdaBoost (CGAdaBoost) classifier and distance regularized level set evolution (DRLSE). The main idea of the proposed method is to establish the relationship between individual vertebrae and the whole spine with vertebral centroids. Scoliosis recognition can be transferred into automatic vertebral detection and segmentation processes, which can avoid the manual data-labeling processing. In the CGAdaBoost classifier, diversified vertebrae images and multifeature descriptors are considered to generate more discriminative features, thus improving the vertebral detection accuracy. After that, the detected bounding box represents an appropriate initial contour of DRLSE to make the vertebral segmentation more accurate. It is helpful for the elimination of initialization sensitivity and quick convergence of vertebra boundaries. Meanwhile, vertebral centroids are extracted to connect the whole spine, thereby describing the spinal curvature. Different parts of the spine are determined as abnormal or normal in accordance with medical prior knowledge. The experimental results demonstrate that the proposed method cannot only effectively identify scoliosis with unlabeled spine CT images but also have superiority against other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俭朴念露发布了新的文献求助10
刚刚
1秒前
applelpypies完成签到 ,获得积分0
1秒前
昌笑白发布了新的文献求助10
3秒前
李晨晨关注了科研通微信公众号
3秒前
4秒前
左彦完成签到,获得积分10
5秒前
诸葛凤雏发布了新的文献求助10
6秒前
小蘑菇应助阿斯顿撒大学采纳,获得10
6秒前
7秒前
完美夜白完成签到,获得积分10
8秒前
8秒前
8秒前
陆小果完成签到,获得积分10
8秒前
10秒前
健壮丝袜发布了新的文献求助10
10秒前
Jasper应助chinnker采纳,获得10
10秒前
10秒前
11秒前
11秒前
Run完成签到,获得积分10
11秒前
yizhiGao应助Jenaloe采纳,获得10
12秒前
昌笑白完成签到,获得积分10
12秒前
Kenzonvay发布了新的文献求助10
12秒前
Spinnin完成签到,获得积分10
12秒前
12秒前
慧慧发布了新的文献求助10
13秒前
kk发布了新的文献求助30
15秒前
15秒前
15秒前
诸葛凤雏完成签到,获得积分10
15秒前
diguohu完成签到,获得积分10
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
caibao发布了新的文献求助10
16秒前
16秒前
Goodenough发布了新的文献求助10
17秒前
zhaoyy完成签到,获得积分20
18秒前
wls完成签到 ,获得积分10
18秒前
小马甲应助发嗲的悟空采纳,获得10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951219
求助须知:如何正确求助?哪些是违规求助? 3496615
关于积分的说明 11083276
捐赠科研通 3227034
什么是DOI,文献DOI怎么找? 1784184
邀请新用户注册赠送积分活动 868252
科研通“疑难数据库(出版商)”最低求助积分说明 801091