FOXP3型
Treg细胞
平衡(能力)
NF-κB
NFKB1型
炎症
免疫系统
免疫学
生物
癌症研究
医学
转录因子
基因
遗传学
物理疗法
白细胞介素2受体
T细胞
作者
Mengxiao Xie,Jingzhe Wang,Wen Gong,Huiling Xu,Xiaoyuan Pan,Yunpeng Chen,Songwei Ru,Hui Wang,Xiaodan Chen,Yi Zhao,Jing Li,Qing Yin,Sheng Xia,Xiaoming Zhou,Xia Liu,Qixiang Shao
标识
DOI:10.1016/j.jaut.2019.04.018
摘要
The subset of regulatory T (Treg) cells, with its specific transcription Foxp3, is a unique cell type for the maintenance of immune homeostasis by controlling effector T (Teff) cell responses. Although it is common that a defect in Treg cells with Treg/Teff disorder causes autoimmune diseases; however, the precise mechanisms are not thoroughly revealed. Here, we report that miR-34a could attenuate human and murine Foxp3 gene expression via targeting their 3' untranslated regions (3' UTR). The human miR-34a, increased in peripheral blood mononuclear cells (PBMCs) and CD4+ T cells from rheumatoid arthritis (RA) or systemic lupus erythematosus (SLE) patients, displayed a positive correlation with some serum markers of inflammation including rheumatoid factor (RF), anti-streptolysin antibody (ASO), erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) as well as Th17 signature gene RORγt, but inversely correlated with the mRNA expression levels of FOXP3. In addition, murine miR-34a levels were downregulated in TGF-β-induced Treg cells but upregulated in Th17 cells induced in vitro compared to activated CD4+ T cells. It has also been demonstrated that elevated miR-34a disrupting Treg/Th17 balance in vivo contributed to the progress of pathogenesis of collagen induced arthritis (CIA) mice. Furthermore, IL-6 and TNF-α were responsible for the upregulation of miR-34a and downregulation of Foxp3, which was reverted by the addition of NF-κB/p65 inhibitor BAY11-7082, thus indicating that NF-κB/p65 inhibited Foxp3 expression in an miR-34a-dependent manner. Finally, IL-6 or TNF-α-activated p65 could bind to the miR-34a promotor and enhance its activity, resulting in upregulation of its transcription. Taken together, we show that NF-κB activated by inflammatory cytokines, such as IL-6 and TNF-α, ameliorates Foxp3 levels via regulating miR-34a expression, which provides a new mechanistic and therapeutic insight into the ongoing of autoimmune diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI