Reliable identification of prostate cancer using mass spectrometry metabolomic imaging in needle core biopsies

前列腺癌 代谢组学 前列腺 癌症 医学 生化复发 肿瘤科 计算生物学 前列腺切除术 病理 内科学 生物信息学 生物
作者
Nicole Erin Morse,Tamara Jamaspishvili,David Simon,Palak Patel,Kevin Ren,Jenny Wang,Richard D. Oleschuk,Martin Kaufmann,R. J. Gooding,David M. Berman
出处
期刊:Laboratory Investigation [Springer Nature]
卷期号:99 (10): 1561-1571 被引量:40
标识
DOI:10.1038/s41374-019-0265-2
摘要

Metabolomic profiling can aid in understanding crucial biological processes in cancer development and progression and can also yield diagnostic biomarkers. Desorption electrospray ionization coupled to mass spectrometry imaging (DESI-MSI) has been proposed as a potential adjunct to diagnostic surgical pathology, particularly for prostate cancer. However, due to low resolution sampling, small numbers of mass spectra, and little validation, published studies have yet to test whether this method is sufficiently robust to merit clinical translation. We used over 900 spatially resolved DESI-MSI spectra to establish an accurate, high-resolution metabolic profile of prostate cancer. We identified 25 differentially abundant metabolites, with cancer tissue showing increased fatty acids (FAs) and phospholipids, along with utilization of the Krebs cycle, and benign tissue showing increased levels of lyso-phosphatidylethanolamine (PE). Additionally, we identified, for the first time, two lyso-PEs with abundance that decreased with cancer grade and two phosphatidylcholines (PChs) with increased abundance with increasing cancer grade. Importantly, we developed and internally validated a multivariate metabolomic classifier for prostate cancer using 534 spatial regions of interest (ROIs) in the training cohort and 430 ROIs in the test cohort. With excellent statistical power, the training cohort achieved a balanced accuracy of 97% and validation on testing data set demonstrated 85% balanced accuracy. Given the validated accuracy of this classifier and the correlation of differentially abundant metabolites with established patterns of prostate cancer cell metabolism, we conclude that DESI-MSI is an effective tool for characterizing prostate cancer metabolism with the potential for clinical translation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
故事发布了新的文献求助10
刚刚
刚刚
111发布了新的文献求助50
1秒前
仓颉发布了新的文献求助50
1秒前
1秒前
smottom应助chixueqi采纳,获得10
2秒前
研友_X89o6n完成签到,获得积分0
2秒前
2秒前
xfhxfh完成签到,获得积分20
2秒前
晕倒一下完成签到,获得积分10
2秒前
华仔应助种花家的狗狗采纳,获得10
2秒前
11发布了新的文献求助10
2秒前
3秒前
houruibut完成签到,获得积分10
3秒前
SUKAILIMAI发布了新的文献求助10
3秒前
杨蒙完成签到,获得积分10
3秒前
3秒前
aurora发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
4秒前
5秒前
5秒前
7777juju完成签到,获得积分10
5秒前
李欣超完成签到 ,获得积分10
6秒前
Lucas应助小鲨鱼采纳,获得10
6秒前
6秒前
wzl12306完成签到,获得积分10
6秒前
Lucifer发布了新的文献求助10
7秒前
搞怪的友桃完成签到,获得积分10
7秒前
7秒前
blackbird完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
笨笨翰完成签到,获得积分10
8秒前
8秒前
科研通AI6应助houruibut采纳,获得10
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692559
求助须知:如何正确求助?哪些是违规求助? 5089055
关于积分的说明 15208836
捐赠科研通 4849783
什么是DOI,文献DOI怎么找? 2601280
邀请新用户注册赠送积分活动 1553052
关于科研通互助平台的介绍 1511274