Nanorod Gradient Cathode: Preventing Electrolyte Penetration into Cathode Particles

材料科学 纳米棒 阴极 电解质 扫描电子显微镜 复合材料 透射电子显微镜 化学工程 纳米技术 电极 化学 工程类 物理化学
作者
H. Hohyun Sun,Jason A. Weeks,Adam Heller,C. Buddie Mullins
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:2 (8): 6002-6011 被引量:44
标识
DOI:10.1021/acsaem.9b01116
摘要

Layered nickel-rich cathode particles for lithium-ion batteries can fail and severely limit the cycling performance via cracking from anisotropic strain which allows electrolyte penetration and the formation of electrically insulating material and a decreased capacity. Self-assembled layered nanorod gradient (NRG) Li[Ni0.81Co0.06Mn0.13]O2 cathode particles cycle more stably with improved performance compared to its constant concentration counterpart. NRG cathode material was synthesized with a Ni-rich bulk (for higher lithium storage) and a radially columnar nanorod comprised surface and benchmarked against the widely used constant concentration (CC) LI[Ni0.82Co0.14Al0.04]O2 cathode and in both half- and full-cells. Through a combination of in situ and time-resolved X-ray diffraction (XRD), cross-section scanning electron microscopy imaging (SEM), and high-resolution transmission electron microscopy (HR-TEM), we confirm that the enhanced durability of the NRG material is attributed to its radially columnar concentration graded nanorods at the surface. These nanorods function as a buffer to diminish abrupt stress from the high Ni-content bulk during the H2 → H3 phase transition by suppressing crack propagation to preserve particle coherency, enabling reversibility of the cathode particle. Notably, we show that electrolyte infiltration into the reactive Ni-rich bulk and subsequent formation of the electrically insulating rock-salt nanostructure (NiO) along the cracks are prevented, thereby minimizing impedance increase during long-term cycling. Furthermore, the increased Mn concentration at the outer surface of the nanorods also enhances the thermal stability by delaying the layered to rock-salt phase transition on the surface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐风完成签到,获得积分10
刚刚
sandy完成签到 ,获得积分20
刚刚
gdh发布了新的文献求助10
1秒前
科研通AI5应助小白采纳,获得10
1秒前
脑洞疼应助舒心书南采纳,获得10
3秒前
Hello应助coco采纳,获得10
3秒前
奶盖呀完成签到 ,获得积分10
3秒前
天天快乐应助小C采纳,获得10
4秒前
Rainnnn完成签到,获得积分20
6秒前
感动水杯发布了新的文献求助10
6秒前
迪迦完成签到,获得积分10
7秒前
Estella发布了新的文献求助10
8秒前
倔驴发布了新的文献求助10
8秒前
9秒前
10秒前
倷倷完成签到 ,获得积分10
10秒前
SciGPT应助McGrady采纳,获得10
13秒前
14秒前
个性凡儿完成签到,获得积分10
15秒前
wang97发布了新的文献求助10
16秒前
lzq完成签到,获得积分10
16秒前
522完成签到,获得积分10
18秒前
jxm完成签到 ,获得积分10
18秒前
Zoe_Zhang发布了新的文献求助10
19秒前
langchaozhong发布了新的文献求助10
19秒前
20秒前
彭于晏应助wangli采纳,获得10
20秒前
21秒前
21秒前
Joanna完成签到,获得积分10
23秒前
南瓜豆腐完成签到 ,获得积分10
24秒前
东莱牧鲲完成签到,获得积分10
24秒前
McGrady发布了新的文献求助10
25秒前
wwj完成签到,获得积分10
25秒前
小马甲应助852采纳,获得10
25秒前
mrt发布了新的文献求助30
25秒前
26秒前
27秒前
Cosmicspirit完成签到,获得积分10
30秒前
kokjh发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4545841
求助须知:如何正确求助?哪些是违规求助? 3977345
关于积分的说明 12316080
捐赠科研通 3645565
什么是DOI,文献DOI怎么找? 2007662
邀请新用户注册赠送积分活动 1043268
科研通“疑难数据库(出版商)”最低求助积分说明 932088