Nanorod Gradient Cathode: Preventing Electrolyte Penetration into Cathode Particles

材料科学 纳米棒 阴极 电解质 扫描电子显微镜 复合材料 透射电子显微镜 化学工程 纳米技术 电极 化学 工程类 物理化学
作者
H. Hohyun Sun,Jason A. Weeks,Adam Heller,C. Buddie Mullins
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:2 (8): 6002-6011 被引量:44
标识
DOI:10.1021/acsaem.9b01116
摘要

Layered nickel-rich cathode particles for lithium-ion batteries can fail and severely limit the cycling performance via cracking from anisotropic strain which allows electrolyte penetration and the formation of electrically insulating material and a decreased capacity. Self-assembled layered nanorod gradient (NRG) Li[Ni0.81Co0.06Mn0.13]O2 cathode particles cycle more stably with improved performance compared to its constant concentration counterpart. NRG cathode material was synthesized with a Ni-rich bulk (for higher lithium storage) and a radially columnar nanorod comprised surface and benchmarked against the widely used constant concentration (CC) LI[Ni0.82Co0.14Al0.04]O2 cathode and in both half- and full-cells. Through a combination of in situ and time-resolved X-ray diffraction (XRD), cross-section scanning electron microscopy imaging (SEM), and high-resolution transmission electron microscopy (HR-TEM), we confirm that the enhanced durability of the NRG material is attributed to its radially columnar concentration graded nanorods at the surface. These nanorods function as a buffer to diminish abrupt stress from the high Ni-content bulk during the H2 → H3 phase transition by suppressing crack propagation to preserve particle coherency, enabling reversibility of the cathode particle. Notably, we show that electrolyte infiltration into the reactive Ni-rich bulk and subsequent formation of the electrically insulating rock-salt nanostructure (NiO) along the cracks are prevented, thereby minimizing impedance increase during long-term cycling. Furthermore, the increased Mn concentration at the outer surface of the nanorods also enhances the thermal stability by delaying the layered to rock-salt phase transition on the surface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知性的千秋完成签到,获得积分10
1秒前
liuye0202完成签到,获得积分10
1秒前
胖川完成签到,获得积分10
3秒前
幽默的小之完成签到,获得积分10
3秒前
爱吃秋刀鱼的大脸猫完成签到,获得积分10
4秒前
蓝丝绒完成签到,获得积分20
4秒前
李健的小迷弟应助qsxy采纳,获得10
6秒前
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
7秒前
wanci应助科研通管家采纳,获得10
7秒前
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
文静应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
wanci应助科研通管家采纳,获得10
7秒前
8秒前
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
天天快乐应助zzz采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304885
求助须知:如何正确求助?哪些是违规求助? 4451091
关于积分的说明 13850915
捐赠科研通 4338444
什么是DOI,文献DOI怎么找? 2381863
邀请新用户注册赠送积分活动 1376942
关于科研通互助平台的介绍 1344399