Nanorod Gradient Cathode: Preventing Electrolyte Penetration into Cathode Particles

材料科学 纳米棒 阴极 电解质 扫描电子显微镜 复合材料 透射电子显微镜 化学工程 纳米技术 电极 化学 工程类 物理化学
作者
H. Hohyun Sun,Jason A. Weeks,Adam Heller,C. Buddie Mullins
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:2 (8): 6002-6011 被引量:44
标识
DOI:10.1021/acsaem.9b01116
摘要

Layered nickel-rich cathode particles for lithium-ion batteries can fail and severely limit the cycling performance via cracking from anisotropic strain which allows electrolyte penetration and the formation of electrically insulating material and a decreased capacity. Self-assembled layered nanorod gradient (NRG) Li[Ni0.81Co0.06Mn0.13]O2 cathode particles cycle more stably with improved performance compared to its constant concentration counterpart. NRG cathode material was synthesized with a Ni-rich bulk (for higher lithium storage) and a radially columnar nanorod comprised surface and benchmarked against the widely used constant concentration (CC) LI[Ni0.82Co0.14Al0.04]O2 cathode and in both half- and full-cells. Through a combination of in situ and time-resolved X-ray diffraction (XRD), cross-section scanning electron microscopy imaging (SEM), and high-resolution transmission electron microscopy (HR-TEM), we confirm that the enhanced durability of the NRG material is attributed to its radially columnar concentration graded nanorods at the surface. These nanorods function as a buffer to diminish abrupt stress from the high Ni-content bulk during the H2 → H3 phase transition by suppressing crack propagation to preserve particle coherency, enabling reversibility of the cathode particle. Notably, we show that electrolyte infiltration into the reactive Ni-rich bulk and subsequent formation of the electrically insulating rock-salt nanostructure (NiO) along the cracks are prevented, thereby minimizing impedance increase during long-term cycling. Furthermore, the increased Mn concentration at the outer surface of the nanorods also enhances the thermal stability by delaying the layered to rock-salt phase transition on the surface.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安医清嘉完成签到,获得积分10
1秒前
降智小甜饼完成签到,获得积分10
1秒前
2秒前
紧张的惜梦应助wyyj采纳,获得10
2秒前
3秒前
4秒前
4秒前
4秒前
Ripper完成签到,获得积分10
5秒前
西西歪发布了新的文献求助10
6秒前
Alien完成签到,获得积分20
6秒前
happyAlice发布了新的文献求助10
7秒前
8秒前
脑洞疼应助按时采纳,获得10
9秒前
皮卡丘完成签到 ,获得积分0
9秒前
香蕉觅云应助可靠的寒风采纳,获得10
10秒前
qqct发布了新的文献求助10
10秒前
10秒前
bkagyin应助lgying采纳,获得30
11秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
spainraul完成签到,获得积分10
13秒前
15秒前
15秒前
科研通AI6.1应助zzj采纳,获得10
16秒前
spainraul发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
玉米发布了新的文献求助10
17秒前
18秒前
larsy完成签到 ,获得积分10
18秒前
19秒前
整齐的晓霜关注了科研通微信公众号
19秒前
科研王完成签到 ,获得积分10
19秒前
20秒前
20秒前
FashionBoy应助happyAlice采纳,获得10
21秒前
浪漫丰追梦完成签到,获得积分20
21秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762881
求助须知:如何正确求助?哪些是违规求助? 5537393
关于积分的说明 15403910
捐赠科研通 4898922
什么是DOI,文献DOI怎么找? 2635190
邀请新用户注册赠送积分活动 1583298
关于科研通互助平台的介绍 1538405