Nanorod Gradient Cathode: Preventing Electrolyte Penetration into Cathode Particles

材料科学 纳米棒 阴极 电解质 扫描电子显微镜 复合材料 透射电子显微镜 化学工程 纳米技术 电极 化学 工程类 物理化学
作者
H. Hohyun Sun,Jason A. Weeks,Adam Heller,C. Buddie Mullins
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:2 (8): 6002-6011 被引量:44
标识
DOI:10.1021/acsaem.9b01116
摘要

Layered nickel-rich cathode particles for lithium-ion batteries can fail and severely limit the cycling performance via cracking from anisotropic strain which allows electrolyte penetration and the formation of electrically insulating material and a decreased capacity. Self-assembled layered nanorod gradient (NRG) Li[Ni0.81Co0.06Mn0.13]O2 cathode particles cycle more stably with improved performance compared to its constant concentration counterpart. NRG cathode material was synthesized with a Ni-rich bulk (for higher lithium storage) and a radially columnar nanorod comprised surface and benchmarked against the widely used constant concentration (CC) LI[Ni0.82Co0.14Al0.04]O2 cathode and in both half- and full-cells. Through a combination of in situ and time-resolved X-ray diffraction (XRD), cross-section scanning electron microscopy imaging (SEM), and high-resolution transmission electron microscopy (HR-TEM), we confirm that the enhanced durability of the NRG material is attributed to its radially columnar concentration graded nanorods at the surface. These nanorods function as a buffer to diminish abrupt stress from the high Ni-content bulk during the H2 → H3 phase transition by suppressing crack propagation to preserve particle coherency, enabling reversibility of the cathode particle. Notably, we show that electrolyte infiltration into the reactive Ni-rich bulk and subsequent formation of the electrically insulating rock-salt nanostructure (NiO) along the cracks are prevented, thereby minimizing impedance increase during long-term cycling. Furthermore, the increased Mn concentration at the outer surface of the nanorods also enhances the thermal stability by delaying the layered to rock-salt phase transition on the surface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助天真的灵采纳,获得10
1秒前
结实之卉完成签到,获得积分10
1秒前
论英雄完成签到,获得积分10
1秒前
1秒前
POKKKK发布了新的文献求助10
1秒前
阿诺德完成签到,获得积分20
2秒前
桂子发布了新的文献求助10
2秒前
共享精神应助wxwx采纳,获得10
3秒前
3秒前
5秒前
小尹同学应助fuje采纳,获得30
5秒前
doreen完成签到 ,获得积分10
5秒前
7秒前
英姑应助for_abSCI采纳,获得30
7秒前
Orange应助桂子采纳,获得10
8秒前
科研通AI2S应助安可瓶子采纳,获得10
8秒前
11秒前
POKKKK完成签到,获得积分10
11秒前
jjgbmt完成签到 ,获得积分10
11秒前
12秒前
12秒前
12秒前
天真的灵发布了新的文献求助10
15秒前
Hello应助丰富广缘采纳,获得10
15秒前
理想三寻发布了新的文献求助10
16秒前
淋巴细胞发布了新的文献求助10
16秒前
wtg发布了新的文献求助10
17秒前
17秒前
owoow发布了新的文献求助10
18秒前
18秒前
19秒前
香蕉船上的蕉太狼应助aff采纳,获得10
19秒前
灵活的胖子wxp完成签到,获得积分10
21秒前
22秒前
wxwx发布了新的文献求助10
22秒前
23秒前
黎明完成签到,获得积分10
23秒前
天真尔安发布了新的文献求助10
23秒前
23秒前
香蕉子骞发布了新的文献求助20
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145597
求助须知:如何正确求助?哪些是违规求助? 2797033
关于积分的说明 7822546
捐赠科研通 2453369
什么是DOI,文献DOI怎么找? 1305607
科研通“疑难数据库(出版商)”最低求助积分说明 627514
版权声明 601464