Nanorod Gradient Cathode: Preventing Electrolyte Penetration into Cathode Particles

材料科学 纳米棒 阴极 电解质 扫描电子显微镜 复合材料 透射电子显微镜 化学工程 纳米技术 电极 化学 工程类 物理化学
作者
H. Hohyun Sun,Jason A. Weeks,Adam Heller,C. Buddie Mullins
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:2 (8): 6002-6011 被引量:44
标识
DOI:10.1021/acsaem.9b01116
摘要

Layered nickel-rich cathode particles for lithium-ion batteries can fail and severely limit the cycling performance via cracking from anisotropic strain which allows electrolyte penetration and the formation of electrically insulating material and a decreased capacity. Self-assembled layered nanorod gradient (NRG) Li[Ni0.81Co0.06Mn0.13]O2 cathode particles cycle more stably with improved performance compared to its constant concentration counterpart. NRG cathode material was synthesized with a Ni-rich bulk (for higher lithium storage) and a radially columnar nanorod comprised surface and benchmarked against the widely used constant concentration (CC) LI[Ni0.82Co0.14Al0.04]O2 cathode and in both half- and full-cells. Through a combination of in situ and time-resolved X-ray diffraction (XRD), cross-section scanning electron microscopy imaging (SEM), and high-resolution transmission electron microscopy (HR-TEM), we confirm that the enhanced durability of the NRG material is attributed to its radially columnar concentration graded nanorods at the surface. These nanorods function as a buffer to diminish abrupt stress from the high Ni-content bulk during the H2 → H3 phase transition by suppressing crack propagation to preserve particle coherency, enabling reversibility of the cathode particle. Notably, we show that electrolyte infiltration into the reactive Ni-rich bulk and subsequent formation of the electrically insulating rock-salt nanostructure (NiO) along the cracks are prevented, thereby minimizing impedance increase during long-term cycling. Furthermore, the increased Mn concentration at the outer surface of the nanorods also enhances the thermal stability by delaying the layered to rock-salt phase transition on the surface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不倦应助迷路的映安采纳,获得10
1秒前
Mizuki完成签到,获得积分10
2秒前
3秒前
三分糖发布了新的文献求助10
3秒前
苏雨康完成签到,获得积分10
3秒前
4秒前
7弥LY完成签到 ,获得积分10
6秒前
爱喝蜜桃乌龙完成签到,获得积分10
6秒前
Ava应助Oracle采纳,获得10
7秒前
7秒前
栖浔完成签到 ,获得积分10
8秒前
8秒前
8秒前
张均旗发布了新的文献求助10
9秒前
十一发布了新的文献求助10
9秒前
培培发布了新的文献求助10
9秒前
Chain完成签到,获得积分10
10秒前
玥来玥好发布了新的文献求助10
11秒前
12秒前
12秒前
薄雪草应助Li梨采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
roselau完成签到,获得积分10
14秒前
14秒前
Zilong864完成签到,获得积分10
14秒前
15秒前
研友_enP05n发布了新的文献求助10
17秒前
三分糖完成签到,获得积分10
17秒前
cc完成签到,获得积分10
17秒前
NexusExplorer应助培培采纳,获得10
17秒前
18秒前
jessie发布了新的文献求助20
20秒前
21秒前
Oracle发布了新的文献求助10
21秒前
丘比特应助张均旗采纳,获得10
22秒前
tejing1158完成签到 ,获得积分10
23秒前
zyp3344完成签到,获得积分10
23秒前
灰庭应助han采纳,获得10
26秒前
呀呀呀完成签到,获得积分10
27秒前
科研通AI5应助芬达采纳,获得30
27秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5139982
求助须知:如何正确求助?哪些是违规求助? 4338734
关于积分的说明 13513325
捐赠科研通 4178179
什么是DOI,文献DOI怎么找? 2291157
邀请新用户注册赠送积分活动 1291751
关于科研通互助平台的介绍 1234079