Nanorod Gradient Cathode: Preventing Electrolyte Penetration into Cathode Particles

材料科学 纳米棒 阴极 电解质 扫描电子显微镜 复合材料 透射电子显微镜 化学工程 纳米技术 电极 化学 工程类 物理化学
作者
H. Hohyun Sun,Jason A. Weeks,Adam Heller,C. Buddie Mullins
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:2 (8): 6002-6011 被引量:44
标识
DOI:10.1021/acsaem.9b01116
摘要

Layered nickel-rich cathode particles for lithium-ion batteries can fail and severely limit the cycling performance via cracking from anisotropic strain which allows electrolyte penetration and the formation of electrically insulating material and a decreased capacity. Self-assembled layered nanorod gradient (NRG) Li[Ni0.81Co0.06Mn0.13]O2 cathode particles cycle more stably with improved performance compared to its constant concentration counterpart. NRG cathode material was synthesized with a Ni-rich bulk (for higher lithium storage) and a radially columnar nanorod comprised surface and benchmarked against the widely used constant concentration (CC) LI[Ni0.82Co0.14Al0.04]O2 cathode and in both half- and full-cells. Through a combination of in situ and time-resolved X-ray diffraction (XRD), cross-section scanning electron microscopy imaging (SEM), and high-resolution transmission electron microscopy (HR-TEM), we confirm that the enhanced durability of the NRG material is attributed to its radially columnar concentration graded nanorods at the surface. These nanorods function as a buffer to diminish abrupt stress from the high Ni-content bulk during the H2 → H3 phase transition by suppressing crack propagation to preserve particle coherency, enabling reversibility of the cathode particle. Notably, we show that electrolyte infiltration into the reactive Ni-rich bulk and subsequent formation of the electrically insulating rock-salt nanostructure (NiO) along the cracks are prevented, thereby minimizing impedance increase during long-term cycling. Furthermore, the increased Mn concentration at the outer surface of the nanorods also enhances the thermal stability by delaying the layered to rock-salt phase transition on the surface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lewis发布了新的文献求助20
刚刚
传奇3应助迷路的煎蛋采纳,获得10
1秒前
congcong发布了新的文献求助10
1秒前
2秒前
蜂蜜完成签到,获得积分10
2秒前
蓝桉完成签到 ,获得积分10
3秒前
张景灿完成签到,获得积分10
3秒前
蘇q完成签到 ,获得积分10
4秒前
4秒前
5秒前
6秒前
nous完成签到,获得积分10
6秒前
11完成签到,获得积分10
7秒前
西西完成签到,获得积分10
7秒前
7秒前
Wang_ZiMo发布了新的文献求助10
8秒前
海绵宝宝的做饭铲完成签到,获得积分10
8秒前
8秒前
yuuka发布了新的文献求助10
9秒前
Wang驳回了李健应助
9秒前
微笑笑卉发布了新的文献求助10
10秒前
科研通AI6应助狂野大雄鹰采纳,获得10
12秒前
zwangxia完成签到,获得积分10
13秒前
14秒前
Xuz完成签到 ,获得积分10
15秒前
谢123完成签到 ,获得积分10
15秒前
15秒前
hahage完成签到,获得积分10
17秒前
17秒前
Akim应助科研通管家采纳,获得10
17秒前
tcf应助科研通管家采纳,获得10
17秒前
源源完成签到 ,获得积分10
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
Akim应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
18秒前
思源应助科研通管家采纳,获得30
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
英姑应助科研通管家采纳,获得10
18秒前
natmed应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379192
求助须知:如何正确求助?哪些是违规求助? 4503605
关于积分的说明 14016048
捐赠科研通 4412336
什么是DOI,文献DOI怎么找? 2423761
邀请新用户注册赠送积分活动 1416652
关于科研通互助平台的介绍 1394188