计算机科学
图形
健康档案
深度学习
机器学习
医疗保健
人工智能
情报检索
理论计算机科学
经济增长
经济
作者
Junyuan Shang,Cao Xiao,Tengfei Ma,Hongyan Li,Jimeng Sun
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence
[Association for the Advancement of Artificial Intelligence (AAAI)]
日期:2019-07-17
卷期号:33 (01): 1126-1133
被引量:168
标识
DOI:10.1609/aaai.v33i01.33011126
摘要
Recent progress in deep learning is revolutionizing the healthcare domain including providing solutions to medication recommendations, especially recommending medication combination for patients with complex health conditions. Existing approaches either do not customize based on patient health history, or ignore existing knowledge on drug-drug interactions (DDI) that might lead to adverse outcomes. To fill this gap, we propose the Graph Augmented Memory Networks (GAMENet), which integrates the drug-drug interactions knowledge graph by a memory module implemented as a graph convolutional networks, and models longitudinal patient records as the query. It is trained end-to-end to provide safe and personalized recommendation of medication combination. We demonstrate the effectiveness and safety of GAMENet by comparing with several state-of-the-art methods on real EHR data. GAMENet outperformed all baselines in all effectiveness measures, and also achieved 3.60% DDI rate reduction from existing EHR data.
科研通智能强力驱动
Strongly Powered by AbleSci AI