清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

GAMENet: Graph Augmented MEmory Networks for Recommending Medication Combination

计算机科学 图形 健康档案 深度学习 机器学习 医疗保健 人工智能 情报检索 理论计算机科学 经济增长 经济
作者
Junyuan Shang,Cao Xiao,Tengfei Ma,Hongyan Li,Jimeng Sun
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:33 (01): 1126-1133 被引量:168
标识
DOI:10.1609/aaai.v33i01.33011126
摘要

Recent progress in deep learning is revolutionizing the healthcare domain including providing solutions to medication recommendations, especially recommending medication combination for patients with complex health conditions. Existing approaches either do not customize based on patient health history, or ignore existing knowledge on drug-drug interactions (DDI) that might lead to adverse outcomes. To fill this gap, we propose the Graph Augmented Memory Networks (GAMENet), which integrates the drug-drug interactions knowledge graph by a memory module implemented as a graph convolutional networks, and models longitudinal patient records as the query. It is trained end-to-end to provide safe and personalized recommendation of medication combination. We demonstrate the effectiveness and safety of GAMENet by comparing with several state-of-the-art methods on real EHR data. GAMENet outperformed all baselines in all effectiveness measures, and also achieved 3.60% DDI rate reduction from existing EHR data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常的三问完成签到 ,获得积分10
2秒前
2025晨晨完成签到 ,获得积分10
5秒前
whuhustwit完成签到,获得积分10
8秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
虞无声完成签到,获得积分10
13秒前
美丽的芙完成签到 ,获得积分10
14秒前
26秒前
英姑应助勇往直前采纳,获得10
26秒前
无私雅柏完成签到 ,获得积分10
27秒前
生动冰海完成签到 ,获得积分10
28秒前
zoey发布了新的文献求助10
31秒前
bo完成签到 ,获得积分10
34秒前
39秒前
李健的粉丝团团长应助Msc采纳,获得10
40秒前
落霞与孤鹜齐飞完成签到,获得积分10
43秒前
勇往直前发布了新的文献求助10
45秒前
万能图书馆应助zoey采纳,获得10
49秒前
50秒前
Msc发布了新的文献求助10
56秒前
左丘映易完成签到,获得积分0
1分钟前
naczx完成签到,获得积分0
1分钟前
yzhilson完成签到 ,获得积分0
1分钟前
LiangRen完成签到 ,获得积分10
1分钟前
1分钟前
zoey发布了新的文献求助10
1分钟前
zoey完成签到,获得积分10
1分钟前
zzz111发布了新的文献求助10
2分钟前
2分钟前
wayne完成签到 ,获得积分10
2分钟前
久晓完成签到 ,获得积分10
2分钟前
3分钟前
widesky777完成签到 ,获得积分0
3分钟前
Lanyiyang发布了新的文献求助10
3分钟前
MS903完成签到 ,获得积分10
3分钟前
周全完成签到 ,获得积分10
3分钟前
燕儿完成签到 ,获得积分10
3分钟前
liliAnh完成签到 ,获得积分10
3分钟前
Hilda007应助Lanyiyang采纳,获得10
3分钟前
科研通AI6应助leapper采纳,获得10
3分钟前
crystaler完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438737
求助须知:如何正确求助?哪些是违规求助? 4549828
关于积分的说明 14221075
捐赠科研通 4470805
什么是DOI,文献DOI怎么找? 2450023
邀请新用户注册赠送积分活动 1440973
关于科研通互助平台的介绍 1417484