材料科学
热液循环
光催化
水热合成
蝴蝶
化学工程
纳米技术
催化作用
有机化学
生态学
生物
工程类
化学
作者
Tongzhou Chen,Yiran Zheng,Ze-Hua Lu,Ting Xu,Yong Liu,Xianqian Meng,Gang Xu,Gaorong Han
出处
期刊:Nanotechnology
[IOP Publishing]
日期:2019-08-15
卷期号:30 (47): 475709-475709
被引量:9
标识
DOI:10.1088/1361-6528/ab3baa
摘要
Novel butterfly-like CaTiO3 dendrites dominantly bounded by {101} facets have been synthesized via a conventional hydrothermal by using tetramethylammonium hydroxide (TMAH) as a mineralizer and surface modifier. The wing-branches of the butterfly-like CaTiO3 dendrites are composed of primary block tetragonal plates with dominant {101} facets overlapping and ranking around the stem of 〈131〉 directions in the same plane belonging to the group of {101}. With the basis of the experimental results and the lattice structure, a possible formation mechanism of the butterfly-like CaTiO3 dendrites has been discussed and proposed. The preferential adsorption of the organic ions released by the ionization of TMAH on {101} planes suppresses the deposition of the calcium titanate species on {101} planes, which induces the formation of the primary block tetragonal plates and their overlapping as well as ranking around 〈131〉 direction along {101} planes, resulting in the butterfly-like CaTiO3 dendrites bounded with {101} facets. The investigation on the degradation of rhodamine-B demonstrates, due to the dominant exposition of the {101} facets, the butterfly-like CaTiO3 dendrites display superior photocatalytic activity of more than four time that of CaTiO3 microcuboids bounded with smart {101} and (010) facets.
科研通智能强力驱动
Strongly Powered by AbleSci AI