已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Computer-aided detection and visualization of pulmonary embolism using a novel, compact, and discriminative image representation

判别式 可视化 人工智能 代表(政治) 计算机视觉 计算机科学 模式识别(心理学) 图像(数学) 政治 政治学 法学
作者
Nima Tajbakhsh,Jae Y. Shin,Michael B. Gotway,Jianming Liang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:58: 101541-101541 被引量:43
标识
DOI:10.1016/j.media.2019.101541
摘要

Diagnosing pulmonary embolism (PE) and excluding disorders that may clinically and radiologically simulate PE poses a challenging task for both human and machine perception. In this paper, we propose a novel vessel-oriented image representation (VOIR) that can improve the machine perception of PE through a consistent, compact, and discriminative image representation, and can also improve radiologists' diagnostic capabilities for PE assessment by serving as the backbone of an effective PE visualization system. Specifically, our image representation can be used to train more effective convolutional neural networks for distinguishing PE from PE mimics, and also allows radiologists to inspect the vessel lumen from multiple perspectives, so that they can report filling defects (PE), if any, with confidence. Our image representation offers four advantages: (1) Efficiency and compactness-concisely summarizing the 3D contextual information around an embolus in only three image channels, (2) consistency-automatically aligning the embolus in the 3-channel images according to the orientation of the affected vessel, (3) expandability-naturally supporting data augmentation for training CNNs, and (4) multi-view visualization-maximally revealing filling defects. To evaluate the effectiveness of VOIR for PE diagnosis, we use 121 CTPA datasets with a total of 326 emboli. We first compare VOIR with two other compact alternatives using six CNN architectures of varying depths and under varying amounts of labeled training data. Our experiments demonstrate that VOIR enables faster training of a higher-performing model compared to the other compact representations, even in the absence of deep architectures and large labeled training sets. Our experiments comparing VOIR with the 3D image representation further demonstrate that the 2D CNN trained with VOIR achieves a significant performance gain over the 3D CNNs. Our robustness analyses also show that the suggested PE CAD is robust to the choice of CT scanner machines and the physical size of crops used for training. Finally, our PE CAD is ranked second at the PE challenge in the category of 0 mm localization error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑的小霸王完成签到,获得积分10
刚刚
XL神放完成签到 ,获得积分10
5秒前
可爱秋灵完成签到,获得积分20
14秒前
Pauline完成签到 ,获得积分10
17秒前
18秒前
大个应助荣荣采纳,获得10
19秒前
win完成签到,获得积分10
21秒前
小邓巴完成签到 ,获得积分10
22秒前
ste56发布了新的文献求助10
24秒前
bkagyin应助ste56采纳,获得10
32秒前
追寻青柏完成签到,获得积分10
33秒前
小蘑菇应助洵洵采纳,获得10
33秒前
35秒前
SciGPT应助海伯利安采纳,获得10
35秒前
彼岸花开发布了新的文献求助10
38秒前
39秒前
xinxin发布了新的文献求助10
43秒前
win发布了新的文献求助10
49秒前
脑洞疼应助李1采纳,获得10
50秒前
54秒前
55秒前
阿童木完成签到 ,获得积分10
55秒前
55秒前
很腻害的人完成签到,获得积分10
56秒前
可靠的白枫完成签到,获得积分20
57秒前
58秒前
58秒前
academician完成签到,获得积分10
1分钟前
LFJ发布了新的文献求助10
1分钟前
孤独的雪一完成签到,获得积分10
1分钟前
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
李健应助生统小白采纳,获得10
1分钟前
星空发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
LFJ完成签到,获得积分10
1分钟前
Cosmosurfer完成签到,获得积分10
1分钟前
昏睡的半仙完成签到,获得积分20
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953340
求助须知:如何正确求助?哪些是违规求助? 3498849
关于积分的说明 11093159
捐赠科研通 3229336
什么是DOI,文献DOI怎么找? 1785311
邀请新用户注册赠送积分活动 869379
科研通“疑难数据库(出版商)”最低求助积分说明 801439