清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Computer-aided detection and visualization of pulmonary embolism using a novel, compact, and discriminative image representation

判别式 可视化 人工智能 代表(政治) 计算机视觉 计算机科学 模式识别(心理学) 图像(数学) 政治学 政治 法学
作者
Nima Tajbakhsh,Jae Y. Shin,Michael B. Gotway,Jianming Liang
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:58: 101541-101541 被引量:43
标识
DOI:10.1016/j.media.2019.101541
摘要

Diagnosing pulmonary embolism (PE) and excluding disorders that may clinically and radiologically simulate PE poses a challenging task for both human and machine perception. In this paper, we propose a novel vessel-oriented image representation (VOIR) that can improve the machine perception of PE through a consistent, compact, and discriminative image representation, and can also improve radiologists' diagnostic capabilities for PE assessment by serving as the backbone of an effective PE visualization system. Specifically, our image representation can be used to train more effective convolutional neural networks for distinguishing PE from PE mimics, and also allows radiologists to inspect the vessel lumen from multiple perspectives, so that they can report filling defects (PE), if any, with confidence. Our image representation offers four advantages: (1) Efficiency and compactness-concisely summarizing the 3D contextual information around an embolus in only three image channels, (2) consistency-automatically aligning the embolus in the 3-channel images according to the orientation of the affected vessel, (3) expandability-naturally supporting data augmentation for training CNNs, and (4) multi-view visualization-maximally revealing filling defects. To evaluate the effectiveness of VOIR for PE diagnosis, we use 121 CTPA datasets with a total of 326 emboli. We first compare VOIR with two other compact alternatives using six CNN architectures of varying depths and under varying amounts of labeled training data. Our experiments demonstrate that VOIR enables faster training of a higher-performing model compared to the other compact representations, even in the absence of deep architectures and large labeled training sets. Our experiments comparing VOIR with the 3D image representation further demonstrate that the 2D CNN trained with VOIR achieves a significant performance gain over the 3D CNNs. Our robustness analyses also show that the suggested PE CAD is robust to the choice of CT scanner machines and the physical size of crops used for training. Finally, our PE CAD is ranked second at the PE challenge in the category of 0 mm localization error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助lalala采纳,获得30
2秒前
xiaosui完成签到 ,获得积分10
7秒前
JamesPei应助lalala采纳,获得10
28秒前
淞淞于我完成签到 ,获得积分10
32秒前
大个应助lalala采纳,获得20
42秒前
chengmin完成签到 ,获得积分10
43秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
白蓝完成签到 ,获得积分10
44秒前
清爽的火车完成签到 ,获得积分10
45秒前
wuyan204完成签到 ,获得积分10
52秒前
现代完成签到,获得积分10
1分钟前
科研通AI2S应助lalala采纳,获得10
1分钟前
脑洞疼应助Emon采纳,获得10
1分钟前
雪妮完成签到 ,获得积分10
1分钟前
科研通AI2S应助lalala采纳,获得10
1分钟前
pinklay完成签到 ,获得积分10
1分钟前
jerry完成签到 ,获得积分10
1分钟前
赘婿应助lalala采纳,获得10
2分钟前
2分钟前
Emon发布了新的文献求助10
2分钟前
颜陌完成签到,获得积分10
2分钟前
然大宝完成签到,获得积分10
2分钟前
美满的皮卡丘完成签到 ,获得积分10
2分钟前
碧蓝的尔竹应助lalala采纳,获得10
2分钟前
starleo完成签到,获得积分10
2分钟前
欢呼阁完成签到,获得积分10
2分钟前
薏仁完成签到 ,获得积分10
2分钟前
深情的凝云完成签到 ,获得积分10
2分钟前
墨言无殇完成签到 ,获得积分10
2分钟前
明朗完成签到 ,获得积分10
2分钟前
lanxinyue应助lalala采纳,获得10
2分钟前
misa完成签到 ,获得积分10
3分钟前
lulu2024完成签到,获得积分10
3分钟前
阿白头发多多完成签到,获得积分10
3分钟前
zz完成签到 ,获得积分10
3分钟前
MRJJJJ完成签到,获得积分10
3分钟前
曾经不言完成签到 ,获得积分10
3分钟前
勤劳的颤完成签到 ,获得积分10
3分钟前
Yolo完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171651
求助须知:如何正确求助?哪些是违规求助? 2822463
关于积分的说明 7939275
捐赠科研通 2483096
什么是DOI,文献DOI怎么找? 1322988
科研通“疑难数据库(出版商)”最低求助积分说明 633826
版权声明 602647