Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks

生物 基因组 卷积神经网络 计算生物学 遗传学 深度学习 计算机科学 编码(集合论) 人工智能 基因 集合(抽象数据类型) 程序设计语言
作者
David R. Kelley,Jasper Snoek,John L. Rinn
出处
期刊:Genome Research [Cold Spring Harbor Laboratory Press]
卷期号:26 (7): 990-999 被引量:963
标识
DOI:10.1101/gr.200535.115
摘要

The complex language of eukaryotic gene expression remains incompletely understood. Despite the importance suggested by many noncoding variants statistically associated with human disease, nearly all such variants have unknown mechanisms. Here, we address this challenge using an approach based on a recent machine learning advance—deep convolutional neural networks (CNNs). We introduce the open source package Basset to apply CNNs to learn the functional activity of DNA sequences from genomics data. We trained Basset on a compendium of accessible genomic sites mapped in 164 cell types by DNase-seq, and demonstrate greater predictive accuracy than previous methods. Basset predictions for the change in accessibility between variant alleles were far greater for Genome-wide association study (GWAS) SNPs that are likely to be causal relative to nearby SNPs in linkage disequilibrium with them. With Basset, a researcher can perform a single sequencing assay in their cell type of interest and simultaneously learn that cell's chromatin accessibility code and annotate every mutation in the genome with its influence on present accessibility and latent potential for accessibility. Thus, Basset offers a powerful computational approach to annotate and interpret the noncoding genome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ha完成签到 ,获得积分10
刚刚
诚心梦之完成签到,获得积分10
刚刚
牛牛要当院士喽完成签到,获得积分10
刚刚
zyh发布了新的文献求助10
刚刚
1秒前
1秒前
Swallow完成签到,获得积分10
1秒前
1秒前
Shaka发布了新的文献求助10
1秒前
大模型应助桃花落采纳,获得10
2秒前
Shirely发布了新的文献求助10
2秒前
哆啦η梦发布了新的文献求助10
2秒前
An发布了新的文献求助10
2秒前
顾矜应助学习猴采纳,获得10
3秒前
史超发布了新的文献求助10
3秒前
4秒前
幸福纹发布了新的文献求助10
4秒前
4秒前
日富一日完成签到 ,获得积分10
4秒前
天天快乐应助魔幻勒采纳,获得10
5秒前
思源应助小肚肚采纳,获得10
5秒前
6秒前
田様应助young采纳,获得50
6秒前
wjx发布了新的文献求助30
7秒前
camellia发布了新的文献求助10
7秒前
cherry323发布了新的文献求助20
7秒前
无心的海蓝完成签到,获得积分10
7秒前
8秒前
哆啦η梦完成签到,获得积分10
9秒前
史超完成签到,获得积分10
10秒前
热心烙发布了新的文献求助20
10秒前
科研通AI5应助光亮从波采纳,获得10
10秒前
赘婿应助虚拟的惜筠采纳,获得10
10秒前
欢语完成签到,获得积分20
10秒前
Sy0v0完成签到,获得积分10
12秒前
13秒前
阳光含桃完成签到,获得积分10
13秒前
善学以致用应助林秋沐采纳,获得10
13秒前
13秒前
欢语发布了新的文献求助10
13秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805997
求助须知:如何正确求助?哪些是违规求助? 3350835
关于积分的说明 10351617
捐赠科研通 3066714
什么是DOI,文献DOI怎么找? 1684126
邀请新用户注册赠送积分活动 809309
科研通“疑难数据库(出版商)”最低求助积分说明 765432